SEARCH

SEARCH BY CITATION

References

  • 1
    Abney E., Bartlett P., Raff M. (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev. Biol. 83 301310.
  • 2
    Carling D. & Hardie D.G. (1989) The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. Biophys. Acta 1012 8186.
  • 3
    Carling D., Zammit V.A., Hardie D.G. (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223 217222.
  • 4
    Chien S. (1985) Cerebral blood flow and metabolism, in Principals of Neural Science (Kandel E. and Schwartz J., eds), pp. 845852. Elsevier, New York.
  • 5
    Corton J.M., Gillespie J.G., Hardie D.G. (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol. 4 315324.
  • 6
    Cox S.E., Pearce B., Munday M.R. (1997) AMP-activated protein kinase in astrocytes. Biochem. Soc. Trans. 25 S583.
  • 7
    Davies S.P., Helps N.R., Cohen P.T., Hardie D.G. (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 377 421425.
  • 8
    Dyck J.R.B., Gao G., Widmer J., Stapleton D., Fernandez C.S., Kemp B.E., Witters L.A. (1996) Regulation of 5′-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J. Biol. Chem. 271 1779817803.
  • 9
    Ferrer A., Caelles C., Massot N., Hegardt F.G. (1985) Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem. Biophys. Res. Commun. 132 497504.
  • 10
    Foretz M., Carling D., Guichard C., Ferre P., Foufelle F. (1998) AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 273 1476714771.
  • 11
    Fukuda M., Gotoh Y., Nishida E. (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16 19011908.
  • 12
    Gao G., Widmer J., Stapleton D., Teh T., Cox T., Kemp B.E., Witters L.A. (1995) Catalytic subunits of the porcine and rat 5′-AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim. Biophys. Acta. 1266 7382.
  • 13
    Gao G., Fernandez C.S., Stapleton D., Auster A.S., Widmer J., Dyck J.R., Kemp B.E., Witters L.A. (1996) Non-catalytic beta- and gamma-subunit isoforms of the 5′-AMP-activated protein kinase. J. Biol. Chem. 271 86758681.
  • 14
    Garton A.J., Campbell D.G., Carling D., Hardie D.G., Colbran R.J., Yeaman S.J. (1989) Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 179 249254.
  • 15
    Gorlich D. & Mattaj I. (1996) Nucleocytoplasmic transport. Science 271 15131518.
  • 16
    Jiang C. & Haddad G.G. (1997) Modulation of K+ channels by intracellular ATP in human neocortical neurons. J. Neurophysiol. 77 93102.
  • 17
    Jiang C., Sigworth F.J., Haddad G.G. (1994) Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. J. Neurosci. 14 55905602.
  • 18
    Leclerc I., Kahn A., Doiron B. (1998) The 5′-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 431 180184.
  • 19
    Michell B.J., Stapleton D., Mitchelhill K.I., House C.M., Katsis F., Witters L.A., Kemp B.E. (1996) Isoform-specific purification and substrate specificity of the 5′-AMP-activated protein kinase. J. Biol. Chem. 271 2844528450.
  • 20
    Mitchelhill K.I., Stapleton D., Gao G., House C., Michell B., Katsis F., Witters L.A., Kemp B.E. (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269 23612364.
  • 21
    Moore F. & Brophy P.J. (1994) Regulation of acetyl-CoA carboxylase (ACC) by ATP depletion in developing oligodendrocytes mimics the action of AMP-activated protein kinase (AMPK). Biochem. Soc. Trans. 22 416S.
  • 22
    Moore F., Weekes J., Hardie D.G. (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur. J. Biochem. 199 691697.
  • 23
    Mullen R., Buck C., Smith A. (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116 201211.
  • 24
    Nigg E.A. (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386 779787.
  • 25
    Pertsch M., Duncan G., Stumpf W., Pilgrim C. (1988) A histochemical study of the regional distribution in the rat brain of enzymatic activity hydrolyzing glucose- and 72-deoxyglucose-6-phosphate. Histochemistry 88 257262.
  • 26
    Ponticos M., Lu Q.L., Morgan J.E., Hardie D.G., Partridge T.A., Carling D. (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 17 16881699.
  • 27
    Rego A.C., Santos M.S., Oliveira C.R. (1997) Adenosine triphosphate degradation products after oxidative stress and metabolic dysfunction in cultured retinal cells. J. Neurochem. 69 12281235.
  • 28
    Ridet J., Malhotra S., Privat A., Gage F. (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20 570577.
  • 29
    Salt I., Celler J.W., Hawley S.A., Prescott A., Woods A., Carling D., Hardie D.G. (1998) AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem. J. 334 177187.
  • 30
    Schmalz D., Hucho F., Buchner K. (1998) Nuclear import of protein kinase C occurs by a mechanism distinct from the mechanism used by proteins with a classical nuclear localization signal. J. Cell Sci. 111 18231830.
  • 31
    Sprenkle A.B., Davies S.P., Carling D., Hardie D.G., Sturgill T.W. (1997) Identification of Raf-1 Ser621 kinase activity from NIH 3T3 cells as AMP-activated protein kinase. FEBS Lett. 403 254258.
  • 32
    Stapleton D., Gao G., Michell B.J., Widmer J., Mitchelhill K., Teh T., House C.M., Witters L.A., Kemp B.E. (1994) Mammalian 5′-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J. Biol. Chem. 269 2934329346.
  • 33
    Stapleton D., Mitchelhill K.I., Gao G., Widmer J., Michell B.J., Teh T., House C.M., Fernandez C.S., Cox T., Witters L.A., Kemp B.E. (1996) Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271 611614.
  • 34
    Stapleton D., Woollatt E., Mitchelhill K.I., Nicholl J.K., Fernandez C.S., Michell B.J., Witters L.A., Power D.A., Sutherland G.R., Kemp B.E. (1997) AMP-activated protein kinase isoenzyme family: a subunit structure and chromosomal location. FEBS Lett. 409 452456.
  • 35
    Stapleton S.R., Bell B.A., Wootton J.F., Scott R.H. (1995) Modulation of Ca(2+)-dependent currents in metabolically stressed cultured sensory neurones by intracellular photorelease of ATP. Br. J. Pharmacol. 114 544550.
  • 36
    Tolkovsky A.M. & Suidan H.S. (1987) Adenosine 5′-triphosphate synthesis and metabolism localized in neurites of cultured sympathetic neurons. Neuroscience 23 11331142.
  • 37
    Turnley A.M., Morahan G., Okano H., Bernard O., Mikoshiba K., Allison J., Bartlett P.F., Miller J.F. (1991) Dysmyelination in transgenic mice resulting from expression of class I histocompatibility molecules in oligodendrocytes. Nature 353 566569.
  • 38
    Vavvas D., Apazidis A., Saha A.K., Gamble J., Patel A., Kemp B.E., Witters L.A., Ruderman N.B. (1997) Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J. Biol. Chem. 272 1325513261.
  • 39
    Woods A., Salt I., Scott J., Hardie D.G., Carling D. (1996a) The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397 347351.
  • 40
    Woods A., Cheung P.C., Smith F.C., Davison M.D., Scott J., Beri R.K., Carling D. (1996b) Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J. Biol. Chem. 271 1028210290.
  • 41
    Wu V. & Schwartz J. (1998) Cell culture models for reactive gliosis: new perspectives. J. Neurosci. Res. 51 675681.