• Methamphetamine;
  • Serotonin;
  • Striatum;
  • Microdialysis;
  • Neurotoxicity

Abstract: Repeated administration of methamphetamine to animals can lead to long-lasting decreases in striatal monoamine content. In the present study, the effects of neurotoxic doses of methamphetamine on basal and evoked overflow of striatal serotonin and of its primary metabolite 5-hydroxyindoleacetic acid were examined in awake rats using in vivo microdialysis. Male Fischer-344 rats were administered methamphetamine (5 mg/kg, s.c.) or saline four times in 1 day at 2-h intervals. Microdialysis studies were carried out 1 week, 1 month, and 6 months later. At 1 week posttreatment there were significant decreases in potassium- and amphetamine-evoked overflow of serotonin in the striatum of the methamphetamine-treated animals. Basal extracellular levels of 5-hydroxyindoleacetic acid but not of serotonin were also decreased. Evoked overflow of serotonin recovered by 1 month, and extracellular levels of 5-hydroxyindoleacetic acid had recovered by 6 months. Tissue levels of serotonin and 5-hydroxyindoleacetic acid were decreased at 1 week posttreatment but back to control levels by 1 month after treatment. These results indicate that presynaptic serotonergic functioning is attenuated in the striatum of rats treated 1 week earlier with neurotoxic doses of methamphetamine. However, in the model used, the changes are transient, and recovery can occur within 1-6 months posttreatment.