This study was supported by the U.S. Public Health Service via NIH (5R01NS07838-27), the Queen Emma Foundation, Honolulu, and the Hawaii Community Foundation. The authors would like also to acknowledge the support of the Wellcome Trust, the Thompson Fund, and the excellent technical support of Tina Carvallho (Pacific Biomedical Research Center, EM Facility, Honolulu, HI, U.S.A.), who processed the mitochondrial samples for electron microscopy.

  • 1
    Allen K.L., Almeida A., Bates T.E., Clark J.B. (1995) Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia.J. Neurochem. 64 22222229.
  • 2
    Almeida A., Allen K.L., Bates T.E., Clark J.B. (1995) Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain.J. Neurochem. 65 16981703.
  • 3
    Andreyev A.Y., Fahy B., Fiskum G. (1998) Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition.FEBS Lett. 439 373376.
  • 4
    Bates T.E., Almeida A., Heales S.J., Clark J.B. (1994) Postnatal development of the complexes of the electron transport chain in isolated rat brain mitochondria.Dev. Neurosci. 16 321327.
  • 5
    Beal M.F. (1998) Mitochondrial dysfunction in neurodegenerative diseases.Biochim. Biophys. Acta 1366 211223.
  • 6
    Berman S., Watkins S., Hastings T.G. (1998) Evidence that brain mitochondria do not readily undergo permeability transition.Neurosci. Abstr. 24 553.
  • 7
    Bernardi P. & Petronilli V. (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal.J. Bioenerg. Biomembr. 28 131137.
  • 8
    Bernardi P., Vassanelli S., Veronese P., Colonna R., Szabo I., Zoratti M. (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations.J. Biol. Chem. 267 29342939.
  • 9
    Bernardi P., Broekemeier K.M., Pfeiffer D.R. (1994) Recent progress on regulation of the mitochondrial permeability transition pore: a cyclosporin-sensitive pore in the inner mitochondrial membrane.J. Bioenerg. Biomembr. 26 509517.
  • 10
    Bernardi P., Basso E., Colonna R., Costantini P., Di Lisa F., Eriksson O., Fontain E., Forte M., Ichas F., Massari S., Nicolli A., Petronilli V., Scorrano L. (1998) Perspectives on the mitochondrial permeability transition.Biochim. Biophys. Acta 1365 200206.
  • 11
    Bernardi P., Scorrano L., Colonna R., Petronilli V., Di Lisa F. (1999) Mitochondria and cell death.Eur. J. Biochem. 264 687701.
  • 12
    Butcher S.P., Henshall D.C., Teramura Y., Iwasaki K., Sharkey J. (1997) Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an antiexcitotoxic mechanism.J. Neurosci. 17 69396946.
  • 13
    Chance B. & Williams G.R. (1956) The respiratory chain and oxidative phosphorylation.Adv. Enzymol. 17 65134.
  • 14
    Crompton M. & Costi A. (1990) A heart mitochondrial Ca2+-dependent pore of possible relevance to reperfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. Biochem. J. 266 3339.
  • 15
    Duchen M., McGuinness O., Brown L., Crompton M. (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury.Cardiovasc. Res. 27 17901794.
  • 16
    Emaus R.K., Grunwald R., Lemasters J.J. (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties.Biochim. Biophys. Acta 850 436448.
  • 17
    Fiskum G. (1983) Involvement of mitochondria in ischemic cell injury and in regulation of intracellular calcium.Am. J. Emerg. Med. 1 147153.
  • 18
    Fiskum G., Murphy A.N., Beal M.F. (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases.J. Cereb. Blood Flow Metab. 19 351369.
  • 19
    Fontaine E., Eriksson O., Ichas F., Bernardi P. (1998a) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex i.J. Biol. Chem. 273 1266212668.
  • 20
    Fontaine E., Ichas F., Bernardi P. (1998b) A ubiquinone-binding site regulates the mitochondrial permeability transition pore.J. Biol. Chem. 273 2573425740.
  • 21
    Friberg H., Ferrand-Drake M., Bengtsson F., Halestrap A.P., Wieloch T. (1998) Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death.J. Neurosci. 18 51515159.
  • 22
    Griffiths E. & Halestrap A. (1995) Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reperfusion.Biochem. J. 307 9398.
  • 23
    Gunter K.K. & Gunter T.E. (1994) Transport of calcium by mitochondria.J. Bioenerg. Biomembr. 26 471485.
  • 24
    Heales S.J.R., Bolanos J.P., Stewart V.C., Brookes P.S., Land J.M., Clark J.B. (1999) Nitric oxide, mitochondria and neurological disease.Biochim. Biophys. Acta 1410 215228.
  • 25
    Hillered L., Siesjö B.K., Arfors K.E. (1984) Mitochondrial response to transient forebrain ischemia and recirculation in the rat.J. Cereb. Blood Flow Metab. 4 438446.
  • 26
    Kristal B.S. & Dubinsky J.M. (1997) Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and -independent pathways.J. Neurochem. 69 524538.
  • 27
    Kuroda S. & Siesjö B.K. (1997) Reperfusion damage following focal ischemia: Pathophysiology and therapeutic windows.Clin. Neurosci. 4 199212.
  • 28
    Lai J.C.K. & Clark J.B. (1979) Preparation of synaptic and non-synaptic mitochondria from mammalian brain, inMethods in Enzymology, Vol. 55 (Fleischer S. and Packer L., eds), pp. 5160. Academic Press, New York.
  • 29
    Lemasters J.J., Nieminen A., Qian T., Trost L.C., Elmore S.P., Nishimura Y., Crowe R.A., Cascio W.E., Bradham C.A., Brenner D.A., Herman B. (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy.Biochim. Biophys. Acta 1366 177196.
  • 30
    Li P., Uchino K., Elmer E., Siesjö B.K. (1996) Amelioration by cyclosporin A of brain damage following 5 and 10 min of ischemia in rats subjected to preischemic hyperglycemia.Brain Res. 753 133140.
  • 31
    Matsumoto S., Friberg H., Drake M., Wieloch T. (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion.J. Cereb. Blood Flow Metab. 19 736741.
  • 32
    Murphy A.N., Bredesen D.E., Cortopassi G., Wang E., Fiskum G. (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neuronal cell mitochondria.Proc. Natl. Acad. Sci. USA 93 98939898.
  • 33
    Nakahara I., Kikuchi H., Taki W., Nishi S., Kito M., Yonekawa Y., Goto Y., Ogata N. (1991) Degradation of mitochondrial phospholipids during experimental cerebral ischemia in rats.J. Neurochem. 57 839844.
  • 34
    Nicholls D.G. & Budd S.L. (1998) Mitochondria and neuronal glutamate excitotoxicity.Biochim. Biophys. Acta 1366 97112.
  • 35
    Nieminen A., Saylor A.K., Tesfai S.A., Herman B., Lemasters J.J. (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem. J. 307 99106.
  • 36
    Petronilli V., Cola C., Massari S., Colonna R., Bernardi P. (1993) Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria.J. Biol. Chem. 268 2193921945.
  • 37
    Rajdev S. & Reynolds I.J. (1993) Calcium Green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons.Neurosci. Lett. 162 149152.
  • 38
    Rehncrona S., Mela L., Siesjö B.K. (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia.Stroke 10 437446.
  • 39
    Richter C., Gogvadze V., Laffranchi R., Schlapbach R., Schweizer M., Suter M., Walter P., Yaffee M. (1995) Oxidants in mitochondria: from physiology to diseases.Biochim. Biophys. Acta 1271 6774.
  • 40
    Siesjö B.K. (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology.J. Neurosurg. 77 169184.
  • 41
    Sims N.R. (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation.J. Neurochem. 55 698707.
  • 42
    Sims N.R. & Pulsinelli W.A. (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat.J. Neurochem. 49 13671374.
  • 43
    Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D.J, Chen L.B. (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1.Proc. Natl. Acad. Sci. USA 88 36713675.
  • 44
    Sun D. & Gilboe D.D. (1994) Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat.J. Neurochem. 62 19211928.
  • 45
    Szabo I. & Zoratti M. (1991) The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin.J. Biol. Chem. 266 33763379.
  • 46
    Uchino H., Elmér E., Uchino K., Lindvall O., Siesjö B.K. (1995) Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischemia in the rat.Acta Physiol. Scand. 155 469471.
  • 47
    Uchino H., Elmér E., Uchino K., Li P.A., He Q.P., Smith M.L., Siesjö B.K. (1998) Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat.Brain Res. 812 216226.
  • 48
    Wagner K., Kleinholz M., Myers R. (1990) Delayed decrease in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia.J. Neurosurg. Sci. 100 142151.
  • 49
    Yoshimoto T. & Siesjö B.K. (1999) Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia.Brain Res. 839 283291.