SEARCH

SEARCH BY CITATION

Acknowledgements

We thank D. Leszkiewicz, S. Du, and M. Tran for suggestions and help with some of the experiments and Dr. P. Land for many helpful discussions. This work was supported by grants NS29365 (to E.A.) and NS34138 (to I.J.R.) from the National Institutes of Health, a Grant-in Aid from the American Heart Association (to E.A.), grant 98292027 (to I.J.R.) from the USAMRMC, and the University of Pittsburgh Alzheimer's Disease Research Center (to B.A.M.). I.J.R. is an Established Investigator of the American Heart Association.

  • 1
    Adler M., Shafer H., Hamilton T., Petrali J.P. (1999) Cytotoxic actions of the heavy metal chelator TPEN on NG108-15 neuroblastoma—glioma cells. Neurotoxicology 20 571582.
  • 2
    Ahn Y.H., Kim Y.H., Hong S.H., Koh J.Y. (1998) Depletion of intracellular zinc induces protein synthesis-dependent neuronal apoptosis in mouse cortical culture.Exp. Neurol. 154 4756.
  • 3
    Aizenman E., Hartnett K.A., Reynolds I.J. (1990) Oxygen free radicals regulate NMDA receptor function via a redox modulatory site.Neuron 5 841846.
  • 4
    Aizenman E., Brimecombe J.C., Potthoff W.K., Rosenberg P.A. (1998) Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial?Prog. Brain Res. 118 5371.
  • 5
    Andrews G.K. (1999) Regulation of metallothionein gene expression by oxidative stress and metal ions.Biochem. Pharmacol. 59 95104.
  • 6
    Aniksztejn L., Charton G., Ben-Ari Y. (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ.Brain Res. 404 5864.
  • 7
    Aravindakumar C.T., Ceulemans J., DeLey M. (1999) Nitric oxide induces Zn2+ release from metallothionein by destroying zinc—sulfur clusters without concomitant formation of S-nitrosothiol. Biochem. J. 344 253258.
  • 8
    Arslan P., Virgilio F.D., Beltrame M., Tsien R.Y., Pozzan T. (1985) Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+.J. Biol. Chem. 260 27192727.
  • 9
    Assaf S.Y. & Chung S.H. (1984) Release of endogenous Zn2+ from brain tissue during activity.Nature 308 734736.
  • 10
    Atar D., Backx P.H., Appel M.M., Gao W.D., Marban E. (1995) Excitation—transcription coupling mediated by zinc influx through voltage dependent calcium channels. J. Biol. Chem. 270 24732477.
  • 11
    Berg J.M. (1990) Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules.J. Biol. Chem. 265 65136516.
  • 12
    Berendji D., Kolb-Bachofen V., Meyer K.L., Grapenthin O., Weber H., Wahn V., Kroncke K.D. (1997) Nitric oxide mediates intracytoplasmic and intranuclear zinc release.FEBS Lett. 405 3741.
  • 13
    Bortner C.D., Hughes F.M.J.J, Cidlowsky J.A.A. (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis.J. Biol. Chem. 272 3243632442.
  • 14
    Brown A.M., Kristal B.S., Effron M.S., Shestopalov A.I., Ulucci P.A., Sheu K., Blass J.P., Cooper A.J.L. (2000) Zn2+ inhibits α-ketoglutarate-stimulated mitochondrial respiration and the isolated α-ketoglutarate dehydrogenase complex. J. Biol. Chem. 275 1344113447.
  • 15
    Brugg B., Michel P.P., Agid Y., Ruberg M. (1996) Ceramide induces apoptosis in cultured mesencephalic neurons.J. Neurochem. 66 733739.
  • 16
    Canzoniero L.M., Sensi S.L., Choi D.W. (1997) Measurement of intracellular free zinc in living neurons.Neurobiol. Dis. 4 275279.
  • 17
    Chai F., Truong-Tran A.Q., Ho L.H., Zalewski P.D. (1999) Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: a review.Immunol. Cell. Biol. 77 272278.
  • 18
    Cheng C. & Reynolds I.J. (1998) Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons.J. Neurochem. 71 24012410.
  • 19
    Choi D.W., Yokoyama M., Koh J. (1988) Zinc neurotoxicity in cortical cell culture.Neuroscience 24 6779.
  • 20
    Cornell N.W. & Crivaro K.E. (1972) Stability constant for the zinc—dithiothreitol complex. Anal. Biochem. 47 203208.
  • 21
    Csermely P., Sandor P., Radics L., Somogyi J. (1989) Zinc forms complexes with higher kinetical stability than calcium, 5-F-BAPTA as a good example.Biochem. Biophys. Res. Commun. 165 838844.
  • 22
    Cuajungco M.P. & Lees G.J. (1998a) Diverse effects of metal chelating agents on the neuronal cytotoxicity of zinc in the hippocampus.Brain Res. 799 97107.
  • 23
    Cuajungco M.P. & Lees G.J. (1998b) Nitric oxide generators produce accumulations of chelatable zinc in hippocampal neuronal perikarya.Brain Res. 799 118129.
  • 24
    Dalton T.P., Li Q., Bittel D., Liang L., Andrews G.K. (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter.J. Biol. Chem. 271 2623326241.
  • 25
    Dineley K.E., Scanlon J.M., Kress G.J., Stout A.K., Reynolds I.J. (2000) Astrocytes are more resistant than neurons to the cytotoxic effects of increased [Zn2+]i.Neurobiol. Dis. (in press).
  • 26
    Eager K.R., Roden L.D., Dulhunty A.F. (1997) Actions of sulfhydryl reagents on single ryanodine receptor Ca2+-release channels from sheep myocardium. Am. J. Physiol. 272 C1908C1918.
  • 27
    Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. (1998) A caspase-dependent DNase that degrades DNA during apoptosis, and its inhibitor ICAD.Nature 391 4350.
  • 28
    Fojta M., Kubicarova T., Vojtesek B., Palecek E. (1999) Effect of p53 protein redox states on binding to supercoiled and linear DNA.J. Biol. Chem. 274 2574925755.
  • 29
    Fraker P.J. & Telford W.G. (1997) A reappraisal of the role of zinc in life and death decisions of cells.Proc. Soc. Exp. Biol. Med. 215 229236.
  • 30
    Frederickson C.J. (1989) Neurobiology of zinc and zinc-containing neurons.Int. Rev. Neurobiol. 31 145238.
  • 31
    Frederickson C.J., Hernandez M.D., Goik S.A., Morton J.D., McGinty J.F. (1988) Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study.Brain Res. 446 383386.
  • 32
    Grynkiewicz G., Poenie M., Tsien R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260 34403450.
  • 33
    Gwag B.J., Canzoniero L.M., Sensi S.L., Demaro J.A., Koh J.Y., Goldberg M.P., Jacquin M., Choi D.W. (1999) Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons.Neuroscience 90 13391348.
  • 34
    Hannun Y.A. (1994) The sphingomyelin cycle and the second messenger function of ceramide.J. Biol. Chem. 269 31253128.
  • 35
    Hartnett K.A., Stout A.K., Rajdev S., Rosenberg P.A., Reynolds I.J., Aizenman E. (1997) NMDA receptor-mediated neurotoxicity: a paradoxical requirement for extracellular Mg2+ in Na+/Ca2+-free solutions in rat cortical neurons in vitro. J. Neurochem. 68 18361845.
  • 36
    Ho L.H., Ratnaike R.N., Zalewski P.D. (2000) Involvement of intracellular labile zinc in suppression of DEVD-caspase activity in human neuroblastoma cells.Biochem. Biophys. Res. Commun. 268 148154.
  • 37
    Howell G.A., Welch M.G., Frederickson C.J. (1984) Stimulation-induced uptake and release of zinc in hippocampal slices.Nature 308 736738.
  • 38
    Jacob C., Maret W., Vallee B.L. (1998) Control of zinc transfer between thionein, metallothionein and zinc proteins.Proc. Natl. Acad. Sci. USA 95 34893494.
  • 39
    Jiang L.J., Maret W., Vallee B.L. (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase.Proc. Natl. Acad. Sci. USA 95 34833488.
  • 40
    Kim E.Y., Koh J.Y., Kim Y.H., Sohn S., Joe E., Gwag B.J. (1999) Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures.Eur. J. Neurosci. 11 327334.
  • 41
    Kim Y.H., Kim E.Y., Gwag B.J., Sohn S., Koh J.Y. (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals.Neuroscience 89 175182.
  • 42
    Kleiner D. (1974) The effect of Zn2+ ions on mitochondrial electron transport.Arch. Biochem. Biophys. 165 121125.
  • 43
    Koh J. & Choi D.W. (1994) Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors. Neuroscience 60 10491057.
  • 44
    Koh J., Suh S.W., Gwag B.J., He Y.Y., Hsu C.Y., Choi D.W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia.Science 272 10131016.
  • 45
    Kroncke K.D., Fehsel K., Schmidt T., Zenke F.T., Dasting I., Wesener J.R., Betterman H., Breunig K.D., Kolb-Bachofen V. (1994) Nitric oxide destroys zinc—sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem. Biophys. Res. Commun. 200 11051110.
  • 46
    Lee J., Zipfel G.J., Choi D.W. (1999) The changing landscape of ischaemic brain injury mechanisms.Nature 399 (Suppl.) , A7A14.
  • 47
    Lee J., Park J., Kim Y., Kim D.H., Kim C.G., Koh J. -Y. (2000) Induction by synaptic zinc of heat shock protein-70 in hippocampus after kainate seizures.Exp. Neurol. 161 433441.
  • 48
    Lipton S.A. & Kater S.B. (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival.Trends Neurosci. 12 265270.
  • 49
    Manev H., Kharlamov E., Uz T., Mason R.P., Cagnoli C.M. (1997) Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells.Exp. Neurol. 146 171178.
  • 50
    Maret W. & Vallee B.L. (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters.Proc. Natl. Acad. Sci. USA 95 34783482.
  • 51
    McLaughlin B.A., Nelson D., Silver I.A., Erecińska M., Chesselet M.F. (1998) Methylmalonate toxicity in primary neuronal cultures.Neuroscience 86 279290.
  • 52
    Murphy B.J., Andrews G.K., Bittel D., Discher D.J., McCue J., Green C.J., Yanovsky M., Giaccia A., Sutherland R.M., Laderoute K.R., Webster K.A. (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1.Cancer Res. 59 13151322.
  • 53
    Park J.A. & Koh J.Y. (1999) Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death.J. Neurochem. 73 450456.
  • 54
    Pearce L.L., Gandley R.E., Han W., Wasserloos K., Stitt M., Kanai A.J., McLaughlin M.K., Pitt B.R., Levitan E.S. (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein.Proc. Natl. Acad. Sci. USA 97 477482.
  • 55
    Perry D.K., Smyth M.J., Stennicke H.R., Salvesen G.S., Duriez P., Poirier G.G., Hannun Y.A. (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis.J. Biol. Chem. 272 1853018533.
  • 56
    Rosenberg P.A. (1991) Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine.Glia 4 91100.
  • 57
    Rosenberg P.A. & Aizenman E. (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex.Neurosci. Lett. 103 162168.
  • 58
    Sahara S., Aoto M., Eguchi Y., Imamoto N., Yoneda Y., Tsujimoto Y. (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation.Nature 401 168173.
  • 59
    Schissel S.L., Schuchman E.H., Williams K.J., Tabas I. (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J. Biol. Chem. 271 1843118436.
  • 60
    Sensi S.L., Canzoniero L.M., Yu S.P., Ying H.S., Koh J.Y., Kerchner G.A., Choi D.W. (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry.J. Neurosci. 17 95549564.
  • 61
    Sensi S.L., Yin H.Z., Carriedo S.G., Rao S.S., Weiss J.H. (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. USA 96 24142419.
  • 62
    Sheline C.T., Behrens M.M., Choi D.W. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis.J. Neurosci. 20 31393146.
  • 63
    Shumaker D.K., Vann L.R., Goldberg M.W., Allen T.D., Wilson K.L. (1998) TPEN, a Zn2+/Fe2+ chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro.Cell Calcium 23 151164.
  • 64
    Simons T.J.B. (1993) Measurement of free Zn2+ ion concentration with the fluorescent probe mag-fura-2 (furaptra).J. Biochem. Biophys. Methods 27 2537.
  • 65
    Sloviter R.S. (1985) A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation.Brain Res. 330 150153.
  • 66
    Spence M.W., Byers D.M., Palmer F.B., Cook H.W. (1989) A new Zn2+-stimulated sphingomyelinase in fetal bovine serum. J. Biol. Chem. 264 53585363.
  • 67
    Stout A.K. & Reynolds I.J. (1999) High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations.Neuroscience 89 91100.
  • 68
    Virag L. & Szabo C. (1999) Inhibition of poly(ADP-ribose) synthetase (PARS) and protection against peroxynitrite-induced cytotoxicity by zinc chelation.Br. J. Pharmacol. 126 769777.
  • 69
    Vogt K., Mellor J., Tong G., Nicoll R. (2000) The actions of synaptically released zinc at hippocampal mossy fibers.J. Neurosci. 26 187196.
  • 70
    Weiss J.H., Hartley D.M., Koh J., Choi D.W. (1993) AMPA receptor activation potentiates zinc neurotoxicity.Neuron 10 4349.
  • 71
    Yu S.P., Yeh C.H., Sensi S., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current.Science 278 114117.
  • 72
    Zalewski P.D., Forbes I.J., Betts W.H. (1993) Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem. J. 296 403408.
  • 73
    Zalewski P.D., Forbes I.J., Seamark R.F., Borlinghaus R., Betts W.H., Lincoln S.F., Ward A.D. (1994) Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin.Chem. Biol. 1 153161.