• Alzheimer's disease;
  • beta amyloid;
  • complex IV;
  • mitochondrial permeability transition;
  • neurotoxicity;
  • oxidative stress

Beta amyloid (Aβ) peptides accumulate in Alzheimer's disease and are neurotoxic possibly through the production of oxygen free radicals. Using brain microdialysis we characterized the ability of Aβ to increase oxygen radical production in vivo. The 1–40 Aβ fragment increased 2,3-dehydroxybenzoic acid efflux more than the 1–28 fragment, in a manner dependent on nitric oxide synthase and NMDA receptor channels. We then examined the effects of Aβ peptides on mitochondrial function in vitro. Induction of the mitochondrial permeability transition in isolated rat liver mitochondria by Aβ(25–35) and Aβ(35–25) exhibited dose dependency and required calcium and phosphate. Cyclosporin A prevented the transition as did ruthenium red, chlorpromazine, or N-ethylmaleimide. ADP and magnesium delayed the onset of mitochondrial permeability transition. Electron microscopy confirmed the presence of Aβ aggregates and swollen mitochondria and preservation of mitochondrial structure by inhibitors of mitochondrial permeability transition. Cytochrome c oxidase (COX) activity was selectively inhibited by Aβ(25–35) but not by Aβ(35–25). Neurotoxic Aβ peptide can increase oxidative stress in vivo through mechanisms involving NMDA receptors and nitric oxide sythase. Increased intracellular Aβ levels can further exacerbate the genetically driven complex IV defect in sporadic Alzheimer's disease and may precipitate mitochondrial permeability transition opening. In combination, our results provide potential mechanisms to support the feed-forward hypothesis of Aβ neurotoxicity.