SEARCH

SEARCH BY CITATION

References

  • Akerman K. E. O. & Wikstrom M. K. F. (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 68, 191197.
  • Arnaiz S. L., Coronel M. F., Boveris A. (1999) Nitric Oxide, superoxide, and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide: Biol. Chem. 3, 235243.
  • Barja G. & Herero A. (1998) Localization at complex I and mechanism of higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomemb. 30, 235243.
  • Beal M. F., Howell N., Bodis-Wollner I. (1997). Mitochondria and Free Radicals in Neurodegenerative Disease. Wiley-Liss, New York.
  • Bindokas V. P., Jordan J., Lee C. C., Miller R. J. (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci 16, 13241336.
  • Boveris A. & Chance B. (1973) The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem. J. 134, 707716.
  • Boveris A. & Cadenas E. (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54, 311314.
  • Boveris A., Oshino N., Chance B. (1972)The cellular production of hydrogen peroxide. Biochem. J.128, 617630.
  • Boveris A., Cadenas E., Stoppani A. O. M. (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156, 435444.
  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utlizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Brown G. C. (1999) Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta Bio-Energetics 1411, 351369.
  • Budd S. L. & Nicholls D. G. (1996) Mitochondria, calcium regulation and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 67, 22822291.
  • Budd S. L., Castilho R. F., Nicholls D. G. (1997) Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Lett. 415, 2124.
  • Cadenas E. & Boveris A. (1980) Enhancement of hydrogen peroxide formation by protonophores and ionophores in antimycin supplemented mitochondria. Biochem. J. 188, 3137.
  • Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. M. (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180, 248257.
  • Cino M. & Del Maestro R. F. (1989) Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269, 623638.
  • Croteau D. L., Ap R., Hudson E. K., Dianov G. L., Hansford R. G., Bohr V. A. (1997) An oxidative damage-specific endonuclease from rat liver mitochondria. J. Biol. Chem. 272, 2733827344.
  • Dugan L. L., Sensi S. L., Canzoniero L. M. T., Handran S. D., Rothman S. M., Lin T.-S., Goldberg M. P., Choi D. W. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J. Neurosci 15, 63776388.
  • Dykens J. A. (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J. Neurochem. 63, 584591.
  • Halliwell B. (1992) Reactive oxygen species in the central nervous system. J. Neurochem. 59, 16091623.
  • Herero A. & Barja G. (1997) ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J. Bioenerg. Biomemb. 29, 241249.
  • Hinkle P. C., Butow R. A., Racker E. (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. J. Biol. Chem. 242, 51695173.
  • Kang D., Narabayashi H., Sata T., Takeshige K. (1983) Kinetics of superoxide formation by respiratory chain NADH dehydrogenase of bovein heart mitochondria. J. Biochem. (Tokyo) 64, 13011306.
  • Kiedrowski L. & Costa E. (1995) Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Mol. Pharmacol. 47, 140147.
  • Korshunov S. S., Skulachev V. P., Starkov A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 1518.
  • Korshunov S. S., Korkina O. V., Ruuge E. K., Skulachev V. P., Starkov A. A. (1998) Fatty acids as natural uncouplers preventing generation of O2−  and H2 O2 by mitochondria in the resting state. FEBS Lett. 435, 215218.
  • Krishnamoorthy G. & Hinkle P. C. (1988) Studies on the electron transfer pathway, topography of iron sulfur centers, and site of coupling in NADH-Q oxidoreductase. J. Biol. Chem. 263, 1756617575.
  • Ksenzenko M., Konstantinov A. A., Khomutov G. B., Tikhonov A. N., Ruuge E. K. (1984) Relationships between the effects of redox potential, α-thenoyltrifluoroacetone and malonate on O2−. and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin. FEBS Lett. 175, 105108.
  • Kwong L. K. & Sohal R. S. (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch. Biochem. Biophys. 350, 118126.
  • Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535537.
  • Loschen G., Flohe L., Chance B. (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 18, 261264.
  • Loschen G., Azzi A., Flohe L. (1973) Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett. 33, 8488.
  • Mohanty J. G., Jaffe J. S., Schulman E. S., Raible D. G. (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133141.
  • Nicholls D. G. & Akerman K. E. O. (1982) Mitochondrial calcium transport. Biochim. Biophys. Acta 683, 5788.
  • Nieminen A.-L., Petrie T. G., Lemasters J. J., Selman W. R. (1996) Cyclosporin A delays mitochondrial depolarization induced by N-methyl-d-aspartate in cortical neurons: evidence of the mitochodrial permeability transition. Neuroscience 75, 993997.
  • Onishi T. (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta 1364, 186206.
  • Patole M. S., Swaroop A., Ramarsarma T. (1986) Generation of H2O2 in brain mitochondria. J. Neurochem. 47, 18.
  • Reynolds I. J. & Hastings T. G. (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15, 33183327.
  • Ricquier D. & Bouillaud F. (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345, 161179.
  • Rosenthal R. E., Hamud F., Fiskum G., Varghese P. J., Sharpe S. (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J. Cereb. Blood Flow Metab. 7, 752758.
  • Schinder A. F., Olson E. C., Spitzer N. C., Montal M. (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16, 61256133.
  • Skulachev V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta 1363, 100124.
  • Sorgato M. C., Sartorelli L., Loschen G., Azzi A. (1974) Oxygen radicals and hydrogen peroxide in rat brain mitochondria. FEBS Lett. 45, 92.
  • Starkov A. A. & Fiskum G. (2001) Myxothiazol induces H2O2 production from mitochondrial respiratory chain. Biochem. Biophys. Res. Comm 281, 645650.
  • Stewart V. C., Sharpe M. A., Clark J. B., Heales S. J. (2000) Astrocyte derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondria respiratory chain. J. Neurochem. 75, 649700.
  • Stout A. K., Raphael H. M., Kanterewicz B. I., Klann E., Reynolds I. J. (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1, 366373.
  • Takeshige K. & Minakami S. (1979) NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180, 129135.
  • Turrens J. F. (1997) Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17, 38.
  • Turrens J. F. & Boveris A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421427.
  • Turrens J. F., Freeman B. A., Crapo J. D. (1982) Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217, 411421.
  • Turrens J. F., Alexandre A., Lehninger A. L. (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408414.
  • Vergun O., Keelan J., Khodorov B. I., Duchen M. R. (1999) Glutamate-induced mitochondrial depolarisation and pertubation of calcium homeostasis in cultured rat hippocampal neurons. J. Physiol. (Lond.) 519, 451466.
  • Vinogradov A. D. (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364, 169185.
  • Vinogradov A. D., Sled V. D., Burbaev D. S., Drivennikova V. G., Moroz I. A., Onishi T. (1995) Energy-dependent complex I-associated ubisemiquinones in submitochondrial particles. FEBS Lett. 370, 8387.
  • White R. J. & Reynolds I. J. (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J. Neurosci. 15, 13181328.
  • White R. J. & Reynolds I. J. (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J. Neurosci. 16, 56885697.
  • White R. J. & Reynolds I. J. (1997) Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. J. Physiol. (Lond.) 498, 3147.
  • Zhou M. & Panchuk-Voloshina N. (1997) A one-step fluorometric method for the continuous measurement of monoamine oxidize activity. Anal. Biochem. 253, 169174.
  • Zoccarato F., Cavallini L., Deana R., Alexandre A. (1988) Pathways of hydrogen peroxide generation in guinea pig cerebral cortex mitochondria. Biochem. Biophys. Res. Commun. 154, 727734.