SEARCH

SEARCH BY CITATION

References

  • Åkerman K. E. & Jarvisalo J. O. (1980) Effects of ionophores and metabolic inhibitors on the mitochondrial membrane potential within isolated hepatocytes as measured with the safranine method. Biochem. J. 192, 183190.
  • Åkerman K. E. & Wikström M. K. (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 68, 191197.
  • Andreyev A. & Fiskum G. (1999) Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ. 6, 825832.
  • Bernardi P., Vassanelli S., Veronese P., Colonna R., Szabo I., Zoratti M. (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J. Biol. Chem. 267, 29342939.
  • Boveris A. & Chance B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707716.
  • Brustovetsky N. & Dubinsky J. M. (2000a) Dual responses of CNS mitochondria to elevated calcium. J. Neurosci. 20, 103113.
  • Brustovetsky N. & Dubinsky J. M. (2000b) Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. J. Neurosci. 20, 82298237.
  • Buege J. A. & Aust. S. D. (1978) Microsomal lipid peroxidation. Meth. Enzymol. 52, 302310.
  • Cai J. & Jones D. P. (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273, 1140111404.
  • Castilho R. F., Meinicke A. R., Almeida A. M., Hermes-Lima M., Vercesi A. E. (1994) Oxidative damage of mitochondria induced by Fe (II) citrate is potentiated by Ca2+ and includes lipid peroxidation and alterations in membrane proteins. Arch. Biochem. Biophys. 308, 158163.DOI: 10.1006/abbi.1994.1022
  • Castilho R. F., Kowaltowski A. J., Meinicke A. R., Bechara E. J. H., Vercesi A. E. (1995) Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radic. Biol. Med. 18, 479486.
  • Castilho R. F., Hansson O., Ward M. W., Budd S. L., Nicholls D. G. (1998) Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 18, 1027710286.
  • Castilho R. F., Ward M. W., Nicholls D. G. (1999) Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 72, 13941401.
  • Catisti R. & Vercesi A. E. (1999) The participation of pyridine nucleotides redox state and reactive oxygen in the fatty acid-induced permeability transition in rat liver mitochondria. FEBS Lett. 464, 97101.
  • Choi D. W. (1987) Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369379.
  • Choi D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 5860.
  • Crompton M., Moser R., Ludi H., Carafoli E. (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur. J. Biochem. 82, 2531.
  • Dykens J. A. (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J. Neurochem. 63, 584591.
  • Fabiato A. & Fabiato F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75, 463505.
  • Fagian M. M., Pereira-da-Silva L., Martins I. S., Vercesi A. E. (1990) Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. J. Biol. Chem. 265, 1995519960.
  • Fiskum G., Murphy A. N., Beal M. F. (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 19, 351369.
  • Friberg H., Ferrand-Drake M., Bengtsson F., Halestrap A. P., Wieloch T. (1998) Cyclosporin A, but not FK 506, protects mitochondrial and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J. Neurosci. 18, 51515159.
  • Garcia-Ruiz C., Colell A., Mari M., Morales A., Fernandez-Checa J. C. (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 272, 1136911377.
  • Green D. R. & Reed J. C. (1998) Mitochondria and apoptosis. Science 281, 13091312.
  • Grijalba M. T., Vercesi A. E., Schreier S. (1999) Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38, 1327913287.
  • Gunter T. E. & Pfeiffer D. R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755C786.
  • Hoek J. B. & Rydstrom J. (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254, 110.
  • Igbavboa U., Zwizinski C. W., Pfeiffer D. R. (1989) Release of mitochondrial matrix proteins through a Ca2+-requiring cyclosporin-sensitive pathway. Biochem. Biophys. Res. Commun. 161, 619625.
  • Jakubowski W. & Bartosz G. (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int. 24, 757760.DOI: 10.1006/cbir.2000.0556
  • Kowaltowski A. J., Castilho R. F., Grijalba M. T., Bechara E. J., Vercesi A. E. (1996) Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. J. Biol. Chem. 271, 29292934.
  • Kowaltowski A. J., Netto L. E. S., Vercesi A. E. (1998) The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 273, 1276612769.
  • Kowaltowski A. J., Castilho R. F., Vercesi A. E. (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495, 1215.
  • Kristal B. S. & Dubinsky J. M. (1997) Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and-independent pathways. J. Neurochem. 69, 524538.
  • Kristal B. S., Staats P. N., Shestopalov A. I. (2000) Biochemical characterization of the mitochondrial permeability transition in isolated forebrain mitochondria. Dev. Neurosci. 22, 376383.
  • Kristian T., Gertsch J., Bates T. E., Siesjo B. K. (2000) Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O. J. Neurochem. 74, 19992009.DOI: 10.1046/j.1471-4159.2000.0741999.x
  • Kroemer G., Dallaporta B., Resche-Rigon M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619642.
  • LeBel C. P., Ischiropoulos H., Bondy S. C. (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227231.
  • Luetjens C. M., Bui N. T., Sengpiel B., Munstermann G., Poppe M., Krohn A. J., Bauerbach E., Krieglstein J., Prehn J. H. (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J. Neurosci. 20, 57155723.
  • Matsumoto S., Friberg H., Ferrand-Drake M., Wieloch T. (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 19, 736741.
  • Nicholls D. G. & Scott I. D. (1980) The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem. J. 186, 833889.
  • Nieminen A. L., Petrie T. G., Lemasters J. J., Selman W. R. (1996) Cyclosporin A delays mitochondrial depolarization induced by N-methyl-d-aspartate in cortical neurons: evidence of the mitochondrial permeability transition. Neuroscience 75, 993997.
  • Nohl H., Gille L., Schonheit K., Liu Y. (1996) Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen. Free Radic. Biol. Med. 20, 207213.
  • Okonkwo D. O. & Povlishock J. T. (1999) An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J. Cereb. Blood Flow Metab. 19, 443451.
  • Petersen A., Castilho R. F., Hansson O., Wieloch T., Brundin P. (2000) Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons. Brain Res. 857, 2029.
  • Reynolds I. J. & Hastings T. G. (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 1995, 33183327.
  • Scarpa A. (1979) Measurements of cation transport with metallochromic indicators. Meth. Enzymol. 56, 301338.
  • Schild L., Keilhoff G., Augustin W., Reiser G., Striggow F. (2001) Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. FASEB J. 15, 565567.
  • Skulachev V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys. 29, 169202.
  • Smaili S. S., Hsu Y.-T., Youle R. J., Russel J. T. (2000) Mitochondria in Ca2+ signaling and apoptosis. J. Bioenerg. Biomembr. 32, 3546.
  • Stadtman E. R. (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic. Biol. Med. 9, 315325.
  • Sullivan P. G., Thompson M., Scheff S. W. (2000) Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp. Neurol. 161, 631637.DOI: 10.1006/exnr.1999.7282
  • Tenneti L., D'Emilia D. M., Troy C. M., Lipton S. A. (1998) Role of caspases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 71, 946959.
  • Uchino H., Elmer E., Uchino K., Li P. A., He Q. P., Smith M. L., Siesjo B. K. (1998) Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 812, 216226.
  • Valle V. G. R., Fagian M. M., Parentoni L. S., Meinicke A. R., Vercesi A. E. (1993) The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants. Arch. Biochem. Biophys. 307, 17.
  • Vercesi A. E. (1987) The participation of NADP, the transmembrane potential and the energy-linked NAD (P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Arch. Biochem. Biophys. 252, 171178.
  • Vercesi A. E., Bernardes C. F., Hoffmann M. E., Gadelha F. R., Docampo R. (1991) Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of. Trypanosoma Cruzi Situ. J. Biol. Chem. 266, 1443114434.
  • Vergun O., Keelan J., Khodorov B. I., Duchen M. R. (1999) Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J. Physiol. 519, 451466.
  • Zoratti M. & Szabò I. (1995) The mitochondrial permeability transition. Biochim. Biophys. Acta 1241, 139176.
  • Zorov D. B., Filburn C. R., Klotz L. O., Zweier J. L., Sollott S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192, 10011014.