• Bencsics C., Wachtel S. R., Milstien S., Hatakeyama K., Becker J. B. and Kang U. J. (1996) Double transduction with GTP cyclohydrolase I and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J. Neurosci. 16, 44494456.
  • Daubner S. C., Lauriano C., Haycock J. W. and Fitzpatrick P. F. (1992) Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. J. Biol. Chem. 267, 1263912646.
  • Haavik J., Martínez A. and Flatmark T. (1990) pH-dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of ser-40. FEBS Lett. 262, 363365.
  • Haycock J. W. and Wakade A. R. (1992) Activation and multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. J. Neurochem. 58, 5764.
  • Horellou P., Guibert B., Leviel V. and Mallet J. (1989) Retroviral transfer of a human tyrosine hydroxylase cDNA in various cell lines: regulated release of dopamine in mouse anterior pituitary AtT-20 cells. Proc. Natl Acad. Sci. USA 86, 72337237.
  • Horellou P., Brundin P., Kalen P., Mallet J. and Björklund A. (1990) In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5, 393402.
  • Hufton S. E., Jennings I. G. and Cotton R. G. (1995) Structure and function of the aromatic amino acid hydroxylases. Biochem. J. 311, 353366.
  • Kobe B., Jennings I. G., House C. M., Michell B. J., Goodwill K. E., Santarsiero B. D., Stevens R. C., Cotton R. G. and Kemp B. E. (1999) Structural basis of autoregulation of phenylalanine hydroxylase. Nat. Struct. Biol. 6, 442448.
  • Lehmann E. L. (1963) Asymptotically nonparametric inference: an alternative approach to linear models. Ann. Math. Statist. 34, 14941506.
  • Mandel R. J., Rendahl K. G., Spratt S. K., Snyder R. O., Cohen L. K. and Leff S. E. (1998) Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson's disease. J. Neurosci. 18, 42714284.
  • McCulloch R. I. and Fitzpatrick P. F. (1999) Limited proteolysis of tyrosine hydroxylase identifies residues 33–50 as conformationally sensitive to phosphorylation state and dopamine binding. Arch. Biochem. Biophys. 367, 143145.DOI: 10.1006/abbi.1999.1259
  • McCulloch R. I., Daubner S. C. and Fitzpatrick P. F. (2001) Effects of substitution at serine 40 of tyrosine hydroxylase on catecholamine binding. Biochemistry 40, 72737278.
  • Nagatsu T., Levitt M. and Udenfriend S. (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Chem. 239, 29102917.
  • Nakashima A., Mori K., Nagatsu T. and Ota A. (1999a) Expression of human tyrosine hydroxylase type 1 in Escherichia coli as a protease-cleavable fusion protein. J. Neural. Transm. 106, 819824.DOI: 10.1007/s007020050202
  • Nakashima A., Mori K., Suzuki T., Kurita H., Otani M., Nagatsu T. and Ota A. (1999b) Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J. Neurochem. 72, 21452153.DOI: 10.1046/j.1471-4159.1999.0722145.x
  • Nakashima A., Hayashi N., Mori K., Kaneko Y. S., Nagatsu T. and Ota A. (2000a) Positive charge intrinsic to Arg37-Arg38 is critical for dopamine inhibition of the catalytic activity of human tyrosine hydroxylase type 1. FEBS Lett. 465, 5963.
  • Nakashima A., Hayashi N., Mori K., Kaneko Y. S., Nagatsu T. and Ota A. (2000b) Arg37-Arg38 is critical for dopamine inhibition of the catalytic activity of human tyrosine hydroxylase type 1. Soc. Neurosci. Abstracts 26, 1164.
  • Ota A., Nakashima A., Mori K. and Nagatsu T. (1997) Effects of dopamine on N-terminus-deleted human tyrosine hydroxylase type 1 expressed in Escherichia coli. Neurosci. Lett. 229, 5760.
  • Shen Y., Muramatsu S. I., Ikeguchi K., Fujimoto K. I., Fan D. S., Ogawa M., Mizukami H., Urabe M., Kume A., Nagatsu I., Urano F., Suzuki T., Ichinose H., Nagatsu T., Monahan J., Nakano I. and Ozawa K. (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum. Gene Ther. 11, 15091519.DOI: 10.1089/10430340050083243
  • Sutherland C., Alterio J., Campbell D. G., Le Bourdèlles B., Mallet J., Haavik J. and Cohen P. (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2. Eur. J. Biochem. 217, 715722.
  • Uchida K., Takamatsu K., Kaneda N., Toya S., Tsukada Y., Kurosawa Y., Fujita K., Nagatsu T. and Kohsaka S. (1989) Synthesis of L-3,4-dihydroxyphenylalanine by tyrosine hydroxylase cDNA-transfected C6 cells: application for intracerebral grafting. J. Neurochem. 53, 728732.
  • Wolff J. A., Fisher L. J., Xu L., Jinnah H. A., Langlais P. J., Iuvone P. M., O'Malley K. L., Rosenberg M. B., Shimohama S., Friedmann T. and Gage F. H. (1989) Grafting fibroblasts genetically modified to produce 1-dopa in a rat model of Parkinson disease. Proc. Natl Acad. Sci. USA 86, 90119014.
  • Wu J., Filer D., Friedhoff A. J. and Goldstein M. (1992) Site-directed mutagenesis of tyrosine hydroxylase. Role of serine 40 in catalysis. J. Biol. Chem. 267, 2575425758.
  • Zar J. H. (1999) Biostatistical Analysis, 4th edn , pp. 223226. Prentice Hall, New Jersey.