1. Acknowledgements
  2. References

Expertise for culturing lymphoblast cell lines by Dr , Richard Bundey (Buck Institute for Age Research, Novato, CA, USA) and Mr , Wade Aaron (Department of Medicine, University of California, San Diego, CA, USA) is appreciated. The authors thank the Hereditary Disease Foundation, Cure HD Initiative, for support of this research. The Harvard Brain Tissue Resource Center was supported in part by PHS MS/NS 31862.


  1. Acknowledgements
  2. References
  • Bates G. P., Mangiarini L., Mahal A. and Davies S. W. (1997) Transgenic models of Huntington's disease. Hum. Mol. Genet. 6, 16631637.
  • Browne S. E., Bowling A. C., MacGarvey U., Baik M., Berger S. C., Muqit M. M., Bird E. D. and Beal M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646653.
  • Carter R. J., Lione L. A., Humby T., Mangiarini L., Mahal A., Bates G. P., Dunnett S. B. and Morton A. J. (1999) Characterization of progressive motor deficits in mice transgenic for the human huntington's disease mutation. J. Neurosci. 19, 32483257.
  • Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A., Ross C. A., Scherzinger E., Wanker R., Mangiarini L. and Bates G. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537548.
  • De la Monte S. M., Vonsattel J. P. and Richardson E. P. (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter and neostriatum in Huntington's disease. J. Neuropath. Exp. Neurol. 47, 516525.
  • DiFiglia M., Sapp E., Chase K., Davies S., Bates G. T., Vonsattel J. and Aronin N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 19901993.
  • Dyer R. B. and McMurray C. T. (2001) Mutant protein in Huntington disase is resistant to proteolysis in affected brain. Nat. Genet. 29, 270278.
  • Goldberg Y. P., Nicholson D. W., Rasper D. M., Kalchman M. A., Koide H. B., Graham R. K., Bromm M., Kazxemi-Esfargani P., Thornberry N. A., Vaillancourt J. P. and Hayden M. R. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet. 13, 442449.
  • Gu M., Gash M. T., Mann V. M., Javoy-Agid F., Cooper J. M. and Schapira A. H. (1996) Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39, 395389.
  • Hackman A. S., Singaraja R., Wellington C., Metzler M., McCutcheon K., Zhang T., Kalchman M. and Hayden M. (1990) The influence of huntingtin protein size on the nuclear localization and cellular toxicity. J. Cell Biol. 141, 10971105.
  • Hodgson J. G., Agopyan N., Gutekunst C. A., Leavitt B. R., LePiane F., Singaraga R., Smith D. J., Bissada N., McCutcheon K., Nasir J., Jamot L., Li X. J., Stevens M. E., Rosemond E., Roder J. C., Phillips A. G., Rubin E. M., Hersch S. M. and Hayden M. R. (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181192.
  • Hook V. Y. H., Noctor S., Sei C. A., Toneff T., Yasothornsrikul S. and Kang Y. H. (1999a) Evidence for functional localization of the proenkephalin-processing enzyme, prohormone thiol protease, to secretory vesicles of chromaffin cells. Endocrinology 140, 37443754.
  • Hook V. Y. H., Sei C., Yasothornsrikul S., Toneff T. and Kang Y. H. (1999b) The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP): co-localization of KPI/APP and PTP in secretory vesicles. J. Biol. Chem. 274, 31653172.
  • Hwang S. R., Kohn A. B. and Hook V. Y. H. (1994) Molecular cloning reveals isoforms of bovine α1-antichymotrypsin. Proc. Natl. Acad. Sci. USA 91, 95799583.
  • Hwang S. R., Steineckert B., Kohn A., Palkovits M. and Hook V. Y. H. (1999) Molecular studies define the primary structure of α1-antichymotrypsin (ACT) protease inhibitor in Alzheimer's disease brains: comparison of ACT in hippocampus and liver. J. Biol. Chem. 274, 18211827.
  • Kim M., Lee H.-S., LaForet G., McIntyre E. J., Chang P., Kim T. W., Williams M., Reddy P. H., Tagle D., Boyce F. M., Won L., Heller A., Aronin N. and DiFiglia M. (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19, 964973.
  • Kim Y. J., Yi Y., Sapp E., Wang Y., Cuiffo B., Kegel K. B., Qin Z. H., Aronin N. and DiFiglia M. (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. USA 98, 1278412789.
  • Koroshetz W. J., Jenkins B. G., Rosen B. R. and Beal M. F. (1997) Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann. Neurol. 41, 160165.
  • MacDonald M. E., Ambrose C. M., Duyao M. P., Myers R. H., Lin C., Srindhi L., Barnes G., Taylor S. A., James M., Groot N., MacFarlane H., Jenmins B., Anderson M. A. et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971983.
  • Mende-Mueller L. M., Toneff T., Hwang S. R., Chesselet M. F. and Hook V. Y. H. (2001) Tissue-specific proteolysis of huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in huntington's disease striatum. J. Neurosci. 21, 18301837.
  • Petersen A., Mani K. and Brundin P. (1999) Recent advances on the pathogenesis of Huntington's disease. Exp. Neurol. 157, 118.DOI: 10.1006/exnr.1998.7006
  • Ross C. A., Margolis R. L., Becher M. W., Wood J. D., Engelender S., Cooper J. K. and Sharp A. H. (1998) Pathogenesis of neurodegenerative diseases associated with expanded glutamine repeats: new answers, new questions. Prog. Brain Res. 117, 397419.
  • Saudou F., Finkbeiner S., Devys D. and Greenberg M. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 5566.
  • Sawa A., Wiegand G. W., Cooper J., Margolis R. L., Sharp A. H., Lawler J. F., Greenmayre J. T., Snyder S. H. and Ross C. A. (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat. Med. 5, 11941198.
  • Tabrizi S. J., Workman J., Hart P. E., Mangiarini L., Mahal A., Bates G., Cooper J. M. and Schapira A. H. (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47, 8086.DOI: 10.1002/1531-8249(200001)47:1<80::AID-ANA13>3.3.CO;2-B
  • Vonsattel J. P. and DiFiglia M. (1998) Huntington's disease. J. Neuropathol. Exp. Neurol. 57, 369384.
  • Wellington C. L., Singaraja R., Ellerby L., Savill J., Roy S., Leavitt B., Cattaneo K. E., Hackam A., Sharp A., Thornberry N., Nicholson D. W., Bredesen D. E. and Hayden M. R. (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275, 1983119838.