• cDNA microarrays;
  • injury-induced molecules;
  • nerve regeneration;
  • Schwann cell;
  • sciatic nerve


One of the most striking features of neurons in the mature peripheral nervous system is their ability to survive and to regenerate their axons following axonal injury. To perform a comprehensive survey of the molecular mechanisms that underlie peripheral nerve regeneration, we analyzed a cDNA library derived from the distal stumps of post-injured sciatic nerve which was enriched in non-myelinating Schwann cells using cDNA microarrays. The number of up- and down-regulated genes in the transected sciatic nerve was 370 and 157, respectively, of the 9596 spotted genes. In the up-regulated group, the number of known genes was 216 and the number of expressed sequence tag (EST) sequences was 154. In the down-regulated group, the number of known genes was 103 and that of EST sequences was 54. We obtained several genes that were previously reported to be involved in regeneration of the injured neurons, such as cathepsin D, ninjurin 1, tenascin C, and co-receptor for glial cell line-derived neurotrophic factor family of trophic factors. In addition to unknown genes, there seemed to be a lot of annotated genes whose role in nerve regeneration remains unknown.