SEARCH

SEARCH BY CITATION

Keywords:

  • AP-1;
  • excitotoxicity;
  • JNK;
  • lithium neuroprotection;
  • p38;
  • p53 phosphorylation

Abstract

In rat cerebellar granule cells, glutamate induced rapid activation of c-Jun N-terminal kinase (JNK) and p38 kinase to phosphorylate c-Jun (at Ser63) and p53 (at Ser15), respectively, and a subsequent marked increase in activator protein-1 (AP-1) binding that preceded apoptotic death. These glutamate-induced effects and apoptosis could largely be prevented by long-term (7 days) pretreatment with 0.5–2 mm lithium, an antibipolar drug. Glutamate's actions could also be prevented by known blockers of this pathway, MK-801 (an NMDA receptor blocker), SB 203580 (a p38 kinase inhibitor) and curcumin (an AP-1 binding inhibitor). The concentration- and time-dependent suppression of glutamate's effects by lithium and curcumin correlated well with their neuroprotective effects. These results suggest a prominent role of JNK and p38, as well as their downstream AP-1 binding activation and p53 phosphorylation in mediating glutamate excitotoxicity. Moreover, the neuroprotective effects of lithium are mediated, at least in part, by suppressing NMDA receptor-mediated activation of the mitogen-activated protein kinase pathway.