SEARCH

SEARCH BY CITATION

References

  • Baudry M. and Lynch G. (2001) Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol. Learn. Mem. 76, 284297.
  • Bayer K. U., De K.P., Leonard A.S., Hell J. W. and Schulman H. (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411, 801805.
  • Beitner-Johnson D., Guitart X. and Nestler E. J. (1991) Dopaminergic brain reward regions of Lewis and Fischer rats display different levels of tyrosine hydroxylase and other morphine- and cocaine-regulated phosphoproteins. Brain Res. 561, 146149.
  • Berhow M. T., Hiroi N. and Nestler E. J. (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 47074715.
  • Calcagnetti D. J., Keck B. J., Quatrella L. A. and Schechter M. D. (1995) Blockade of cocaine-induced conditioned place preference: relevance to cocaine abuse therapeutics. Life Sci. 56, 475483.
  • Chen L. W., Wei L. C., Lang B., Ju G. and Chan Y. S. (2001) Differential expression of AMPA receptor subunits in dopamine neurons of the rat brain: a double immunocytochemical study. Neuroscience 106, 149160.
  • Curtis J. and Finkbeiner S. (1999) Sending signals from the synapse to the nucleus: possible roles for CaMK, Ras/ERK, and SAPK pathways in the regulation of synaptic plasticity and neuronal growth. J. Neurosci. Res. 58, 8895.
  • Dalley J. W., Thomas K. L., Howes S. R., Tsai T. H., Aparicio-Legarza M. I., Reynolds G. P., Everitt B. J. and Robbins T. W. (1999) Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur. J. Neurosci. 11, 12651274.
  • Daunais J. B. and McGinty J. F. (1994) Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs. Synapse 18, 3545.
  • De Vries T. J., Schoffelmeer A. N. M., Binnekade R., Mulder A. H. and Vanderschuren L. J. M. J. (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur. J. Neurosci. 10, 35653571.
  • Dzhura I., Wu Y., Colbran R. J., Balser J. R. and Anderson M. E. (2000) Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat. Cell Biol. 2, 173177.
  • Everitt B. J. and Wolf M. E. (2002) Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 33123320.
  • Gao W. Y., Lee T. H., King G. R. and Ellinwood E. H. (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacology 18, 222232.
  • Giorgetti M., Hotsenpiller G., Ward P., Teppen T. and Wolf M. E. (2001) Amphetamine-induced plasticity of AMPA receptors in the ventral tegmental area: effects on extracellular levels of dopamine and glutamate in freely moving rats. J. Neurosci. 21, 63626369.
  • Gnegy M. E. (2000) Ca2+/calmodulin signaling in NMDA-induced synaptic plasticity. Crit. Rev. Neurobiol. 14, 91129.
  • Griffith L. C. and Schulman H. (1988) The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase. J. Biol. Chem. 263, 95429549.
  • Henry D. J., Hu X. T. and White F. J. (1998) Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor-selective agonists: relevance to cocaine sensitization. Psychopharmacology 140, 233242.
  • Jones S. W. (1998) Overview of voltage-dependent calcium channels. J. Bioenerg. Biomembr. 30, 299312.
  • Kalivas P. W. (1995) Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend. 37, 95100.
  • Kalivas P. W. and Alesdatter J. E. (1993) Involvement of NMDA receptor stimulation in the VTA and amygdala in behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 267, 486495.
  • Kalivas P. W. and Duffy P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J. Neurosci. 13, 276284.
  • Kalivas P. W. and Duffy P. (1998) Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J. Neurochem. 70, 14971502.
  • Kalivas P. W. and Miller J. S. (1984) Neurotensin neurons in the ventral tegmental area project to the medial nucleus accumbens. Brain Res. 300, 157160.
  • Kalivas P. W. and Stewart J. (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223244.
  • Karler R., Calder L. D., Chaudhry I. A. and Turkanis S. A. (1989) Blockade of ‘reverse tolerance’ to cocaine and amphetamine by MK-801. Life Sci. 45, 599606.
  • Karler R., Turkanis S. A., Partlow L. M. and Calder L. D. (1991) Calcium channel blockers in behavioral sensitization. Life Sci. 49, 165170.
  • Kelz M. B. et al. (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272276.
  • Kuzmin A., Zvartau E., Gessa G. L., Martellotta M. C. and Fratta W. (1992) Calcium antagonists isradipine and nimodipine suppress cocaine and morphine intravenous self-administration in drug-naive mice. Pharmacol. Biochem. Behav. 41, 497500.
  • Li Y., Vartanian A. J., White F. J., Xue C. J. and Wolf M. E. (1997) Effects of the AMPA receptor antagonist NBQX on the development and expression of behavioral sensitization to cocaine and amphetamine. Psychopharmacology 134, 266276.
  • Licata S. C. and Pierce R. C. (2002) Calcium/calmodulin-dependent protein kinase II in the VTA contributes to cocaine-induced behavioral sensitization. Abstr. Soc. Neurosci. 28, 289.6.
  • Licata S. C., Freeman A. Y., Pierce-Bancroft A. F. and Pierce R. C. (2000) Repeated stimulation of L-type calcium channels in the rat ventral tegmental area mimics the initiation of behavioral sensitization to cocaine. Psychopharmacology 152, 110118.
  • Licata S. C., Bari A. and Pierce R. C. (2001) The L-type calcium channel antagonist diltiazem attenuates the development of cocaine-induced behavioral sensitization and blocks the reinstatement of cocaine-seeking behavior. Abstr. Soc. Neurosci. 27, 1711.
  • Lim J., Yang C., Hong S. J. and Kim K. S. (2000) Regulation of tyrosine hydroxylase gene transcription by the cAMP-signaling pathway: involvement of multiple transcription factors. Mol. Cell Biochem. 212, 5160.
  • Lisman J. (1994) The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 17, 406412.
  • Lisman J., Schulman H. and Cline H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175190.
  • Mansour A., Meador-Woodruff J. H., Zhou Q., Civelli O., Akil H. and Watson S. J. J. (1992) A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience 46, 959971.
  • Martellotta M. C., Kuzmin A., Muglia P., Gessa G. L. and Fratta W. (1994) Effects of the calcium antagonist isradipine on cocaine intravenous self-administration in rats. Psychopharmacology 113, 378380.
  • McCullough L. A. and Westfall T. C. (1996) Mechanism of catecholamine synthesis inhibition by neuropeptide Y: role of Ca2+ channels and protein kinases. J. Neurochem. 67, 10901099.
  • Michelhaugh S. K. and Gnegy M. E. (2000) Differential regulation of calmodulin content and calmodulin messenger RNA levels by acute and repeated, intermittent amphetamine in dopaminergic terminal and midbrain areas. Neuroscience 98, 275285.
  • Michelhaugh S. K., Pimputkar G. and Gnegy M. E. (1998) Alterations in calmodulin mRNA expression and calmodulin content in rat brain after repeated, intermittent amphetamine. Mol. Brain Res. 62, 3542.
  • Miller S. G. and Kennedy M. B. (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44, 861870.
  • Nakamura Y., Kitani T., Okuno S., Otake K., Sato F. and Fujisawa H. (2000) Immunohistochemical study of the distribution of Ca (2+) /calmodulin-dependent protein kinase phosphatase in the rat central nervous system. Mol. Brain Res. 77, 7694.
  • Nestler E. J., Terwilliger R. Z., Walker J. R., Sevarino K. A. and Duman R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits Gia and Goa in discrete regions of rat brain. J. Neurochem. 55, 10791082.
  • Ostrander M. M., Hartman J., Badiani A., Robinson T. E. and Gnegy M. E. (1998) The effect of environment on the changes in calmodulin in rat brain produced by repeated amphetamine treatment. Brain Res. 797, 339341.
  • Pani L., Kuzmin A., Martellotta M. C., Gessa G. L. and Fratta W. (1991) The calcium antagonist PN 200-110 inhibits the reinforcing properties of cocaine. Brain Res. Bull. 26, 445447.
  • Parsons L. H. and Justice J. B. Jr (1993) Serotonin and dopamine sensitization in the nucleus accumbens, ventral tegmental area and dorsal raphe nucleus following repeated cocaine administration. J. Neurochem. 61, 16111619.
  • Pierce R. C. and Kalivas P. W. (1997a) Repeated cocaine modifies the mechanism by which amphetamine releases dopamine. J. Neurosci. 17, 32543261.
  • Pierce R. C. and Kalivas P. W. (1997b) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192216.
  • Pierce R. C., Born B., Adams M. and Kalivas P. W. (1996) Repeated intra-ventral tegmental area administration of SKF-38393 induces behavioral and neurochemical sensitization to a subsequent cocaine challenge. J. Pharmacol. Exp. Ther. 278, 384392.
  • Pierce R. C., Pierce-Bancroft A. F. and Prasad B. M. (1999) Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/mitogen-activated protein kinase signal transduction cascade. J. Neurosci. 19, 86858695.
  • Pliakas A. M., Carlson R. R., Neve R. L., Konradi C., Nestler E. J. and Carlezon W. A. J. (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J. Neurosci. 21, 73977403.
  • Poncer J. C., Esteban J. A. and Malinow R. (2002) Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 22, 44064411.
  • Rajadhyaksha A., Barczak A., Macias W., Leveque J. C., Lewis S. E. and Konradi C. (1999) L-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J. Neurosci. 19, 63486659.
  • Rajadhyaksha A., Kuppenbender K. D., Kosofsky B. E. and Standaert D. G. (2002) Upregulation of the L-type Ca2+ channel subunit CAv1.2 (α1C) mRNA in the VTA in an amphetamine sensitization paradigm. Abstr. Soc. Neurosci. 28, 808.6.
  • Reimer A. R. and Martin-Iverson M. T. (1994) Nimodipine and haloperidol attenuate behavioural sensitization to cocaine but only nimodipine blocks the establishment of conditioned locomotion induced by cocaine. Psychopharmacology 113, 404410.
  • Robinson T. E. and Berridge K. C. (2000) The psychology and neurobiology of addiction: an incentive- sensitization view. Addiction 95, S91S117.
  • Rompre P. and Perron S. (2000) Evidence for a role of endogenous neurotensin in the initiation of amphetamine sensitization. Neuropharmacology 39, 18801892.
  • Schindler C. W., Tella S. R., Prada J. and Goldberg S. R. (1995) Calcium channel blockers antagonize some of cocaine's cardiovascular effects, but fail to alter cocaine's behavioral effects. J. Pharmacol. Exp. Ther. 272, 791798.
  • Seger R. and Krebs E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726735.
  • Silva A. J., Paylor R., Wehner J. M. and Tonegawa S. (1992a) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206211.
  • Silva A. J., Stevens C. F., Tonegawa S. and Wang Y. (1992b) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 201206.
  • Sorg B. A., Chen S.-Y. and Kalivas P. W. (1993) Time course of tyrosine hydroxylase expression following behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424430.
  • Steketee J. D., Murray T. F. and Kalivas P. W. (1990) Possible role for G proteins in behavioral sensitization. Brain Res. 545, 287291.
  • Stephenson C. P., Hunt G. E., Topple A. N. and McGregor I. S. (1999) The distribution of 3,4-methylenedioxymethamphetamine ‘Ecstasy’-induced c-fos expression in rat brain. Neuroscience 92, 10111023.
  • Stewart J. and Druhan J. P. (1993) The development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the noncompetitive NMDA receptor antagonist, MK-801. Psychopharmacology 110, 125132.
  • Stewart J. and Vezina P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res. 495, 401406.
  • Striplin C. D. and Kalivas P. W. (1992) Correlation between behavioral sensitization to cocaine and G protein ADP-ribosylation in the ventral tegmental area. Brain Res. 579, 181186.
  • Sugita R., Mochizuki H., Ito T., Yokokura H., Kobayashi R. and Hidaka H. (1994) Ca2+/calmodulin-dependent protein kinase kinase cascade. Biochem. Biophys. Res. Commun. 203, 694701.
  • Sun P., Lou L. and Maurer R. A. (1996) Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J. Biol. Chem. 271, 30663373.
  • Tanaka H., Grooms S. Y., Bennett M. V. and Zukin R. S. (2000) The AMPAR subunit GluR2: still front and center-stage. Brain Res. 886, 190207.
  • Turgeon S. M., Pollack A. E. and Fink J. S. (1997) Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res. 749, 120116.
  • Ungless M. A., Whistler J. L., Malenka R. C. and Bonci A. (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583587.
  • Vanderschuren L. J. and Kalivas P. W. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151, 99120.
  • Vezina P. (1996) D1 dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J. Neurosci. 16, 24112420.
  • Vezina P. and Queen A. L. (2000) Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology 151, 184191.
  • Vrana S. L., Vrana K. E., Koves T. R., Smith J. E. and Dworkin S. I. (1993) Chronic cocaine administration increases CNS tyrosine hydroxylase enzyme activity and mRNA levels and tryptophan hydroxylase enzyme activity levels. J. Neurochem. 61, 22622268.
  • White F. J. and Kalivas P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141153.
  • White F. J. and Wang R. Y. (1984) Electrophysiological evidence for A10 dopamine autoreceptor sensitivity following chronic d-amphetamine treatment. Brain Res. 309, 283292.
  • White F. J., Hu X.-T., Zhang X.-F. and Wolf M. E. (1995) Repeated admnistration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445454.
  • Wolf M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679720.
  • Wolf M. E. and Jeziorski M. (1993) Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization. Brain Res. 613, 291294.
  • Wolf M. E. and Xue C. J. (1999) Amphetamine-induced glutamate efflux in the rat ventral tegmental area is prevented by MK-801, SCH 23390, and ibotenic acid lesions of the prefrontal cortex. J. Neurochem. 73, 15291538.
  • Xing J., Ginty D. D. and Greenberg M. E. (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959963.
  • Xue C.-J., Ng J. P., Li Y. and Wolf M. E. (1996) Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352363.
  • Zhang X. F., Hu X. T., White F. J. and Wolf M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699706.