SEARCH

SEARCH BY CITATION

References

  • Allen R. G., Peng B., Pellegrino M. J., Miller E. D., Grandy D. K., Lundblad J. R., Washburn C. L. and Pintar J. E. (2001) Altered processing of pro-orphanin FQ/nociceptin and pro-opiomelanocortin-derived peptides in the brains of mice expressing defective prohormone convertase 2. J. Neurosci. 21, 58645870.
  • Azaryan A. V., Krieger T. J. and Hook V. Y. (1995) Purification and characteristics of the candidate prohormone processing proteases PC2 and PC1/3 from bovine adrenal medulla chromaffin granules. J. Biol. Chem. 270, 82018208.
  • Benjannet S., Rondeau N., Day R., Chretien M. and Seidah N. G. (1991) PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc. Natl Acad. Sci. USA 88, 35643568.
  • Benjannet S., Savaria D., Chretien M. and Seidah N. G. (1995) 7B2 is a specific intracellular binding protein of the prohormone convertase PC2. J. Neurochem. 64, 23032311.
  • Berman Y., Mzhavia N., Polonskaia A., Furuta M., Steiner D. F., Pintar J. E. and Devi L. A. (2000) Defective prodynorphin processing in mice lacking prohormone convertase PC2. J. Neurochem. 75, 17631770.
  • Bloomquist B. T., Eipper B. A. and Mains R. E. (1991) Prohormone-converting enzymes: regulation and evaluation of function using antisense RNA. Mol. Endocrinol. 5, 20142024.
  • Braks J. A. and Martens G. J. (1994) 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78, 263273.
  • Cawley N. X., Cool D. R., Normant E., Shen F. S., Olsen V. and Loh Y. P. (1998) The mechanism of sorting propiomelanocortin to secretory granules and its processing by aspartic and PC enzymes, in Proteolytic and Cellular Mechanisms in Prohormone and Proprotein Processing (HookV. Y. H. ed.), pp. 2948. Landes Bioscience Publishers, Austin, Texas.
  • Cawley N. S., Normant E., Chen A. and Loh Y. P. (2000) Oligomerization of pro-opiomelanocortin is independent of pH, calcium and the sorting signal for the regulated secretory pathway. FEBS Lett. 481, 3741.
  • Chang A. C., Cochet M. and Cohen S. N. (1980) Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide. Proc. Natl Acad. Sci. USA 77, 48904894.
  • Cool D. R., Normant E., Shen F., Chen H. C., Pannell L., Zhang Y. and Loh Y. P. (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe (fat) mice. Cell 88, 7383.
  • Day R., Schafer M. K., Watson S. J., Chretien M. and Seidah N. G. (1992) Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol. Endocrinol. 6, 485497.
  • Dong W., Seidel B., Marcinkiewicz M., Chretien M., Seidah N. G. and Day R. (1997) Cellular localization of the prohormone convertases in the hypothalamic paraventricular and supraoptic nuclei: selective regulation of PC1 in corticotrophin-releasing hormone parvocellular neurons mediated by glucocorticoids. J. Neurosci. 17, 563575.
  • Estivariz F. E., Friedman T. C., Chikuma T. and Loh Y. P. (1992) Processing of adrenocorticotropin by two proteases in bovine intermediate lobe secretory vesicle membranes. A distinct acidic, tetrabasic residue-specific calcium-activated serine protease and a PC2-like enzyme. J. Biol. Chem. 267, 74567463.
  • Fortenberry Y., Liu J. and Lindberg I. (1999) The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines. J. Neurochem. 73, 9941003.
  • Fortenberry Y., Hwang J. R., Apletalina E. V. and Lindberg I. (2002) Functional characterization of ProSAAS: similarities and differences with 7B2. J. Biol. Chem. 277, 51755186.
  • Friedman T. C., Cool D. R., Jayasvasti V., Louie D. and Loh Y. P. (1996) Processing of pro-opiomelanocortin in GH3 cells: inhibition by prohormone convertase 2 (PC2) antisense mRNA. Mol. Cell. Endocrinol. 116, 8996.
  • Furuta M., Yano H., Zhou A., Rouille Y., Holst J. J., Carroll R., Ravazzola M., Orci L., Furuta H. and Steiner D. F. (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl Acad. Sci. USA 94, 66466651.
  • Furuta M., Carroll R., Martin S., Swift H. H., Ravazzola M., Orci L. and Steiner D. F. (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 34313437.
  • Furuta M., Zhou A., Webb G., Carroll R., Ravazzola M., Orci L. and Steiner D. F. (2001) Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J. Biol. Chem. 276, 2719727202.
  • Hook V. Y. H., Heisler S., Sabol S. L. and Axelrod J. (1982) Corticotropin releasing factor stimulates adrenocorticotropin and β-endorphin release from AtT-20 mouse pituitary tumor cells. Biochem. Biophys. Res. Commun 106, 13641370.
  • Hook V. Y. H., Azaryan A. V. and Hwang S. R. (1994) Proteases and the emerging role of protease inhibitors in prohormone processing. FASEB J. 8, 12691278.
  • Hook V. Y. H., Moran K., Kannan R., Kohn A., Lively M. O., Azaryan A., Schiller M. and Miller K. (1997) High-level expression of the prohormone proenkephalin, pro-neuropeptide Y, propiomelanocortin, and beta-protachykinin for in vitro prohormone processing. Protein Expr. Purif. 10, 880888.
  • Ichiyama T., Sato S., Okada K., Catania A. and Lipton J. M. (2000) The neuroimmunomodulatory peptide alpha-MSH. Ann. N Y Acad. Sci. 917, 221226.
  • Johanning K., Juliano M. A., Juliano L., Lazure C., Lamango N. S., Steiner D. F. and Lindberg I. (1998) Specificity of prohormone convertase 2 on proenkephalin and proenkephalin-related substrates. J. Biol. Chem. 273, 2267222680.
  • Loh Y. P., Maldonado A., Zhang C., Tam W. H. and Cawley N. (2002) Mechanism of sorting proopiomelanocortin and proenkephalin to the regulated secretory pathway of neuroendocrine cells. Ann. NY Acad. Sci. 971, 416425.
  • Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N. and Numa S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278, 423427.
  • Oates E. and Herbert E. (1984) 5′ sequence of porcine and rat pro-opiomelanocortin mRNA. One porcine and two rat forms. J. Biol. Chem. 259, 74217425.
  • Parish D. C., Tutega R., Altstein M., Gainer H. and Loh Y. P. (1986) Purification and characterization of a paired basic residue-specific prohormone-converting enzyme from bovine pituitary neural lobe secretory vesicles. J. Biol. Chem. 261, 1439214397.
  • Pritchard L. E., Turnbull A. V. and White A. (2002) Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J. Endocrinol. 172, 411421.
  • Qian Y., Devi L. A., Mzhavia N., Munzer S., Seidah N. G. and Fricker L. D. (2000) The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J. Biol. Chem. 275, 2359623601.
  • Roberts J. L., Seeburg P. H., Shine J., Herbert E., Baxter J. D. and Goodman H. M. (1979) Corticotropin and beta-endorphin: construction and analysis of recombinant DNA complementary to mRNA for the common precursor. Proc. Natl Acad. Sci. USA 76, 21532157.
  • Schafer M. K., Day R., Cullinan W. E., Chretien M., Seidah N. G. and Watson S. J. (1993) Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J. Neurosci. 13, 12581279.
  • Seidah N. G., Benjannet S., Hamelin J., Mamarbachi A. M., Basak A., Marcinkiewicz J., Mbikay M., Chretien M. and Marcinkiewicz M. (1999) The subtilisin/kexin family of precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann. N Y Acad. Sci. 885, 5774.
  • Steiner D. F., Smeekens S. P., Ohagi S. and Chan S. F. (1992) The new enzymology of precursor processing endoproteases. J. Biol. Chem. 267, 2343523438.
  • Thomas L., Leduc R., Thorne B. A., Smeekens S. P., Steiner D. F. and Thomas G. (1991) Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proc. Natl Acad. Sci. USA 88, 52975301.
  • Villeneuve P., Feliciangeli S., Croissandeau G., Seidah N. G., Mbikay M., Kitabgi P. and Beaudet A. (2002) Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study. J. Neurochem. 82, 783793.
  • Vishnuvardhan D., Connolly K., Cain B. and Beinfeld M. C. (2000) PC2 and 7B2 null mice demonstrate that PC2 is essential for normal pro-CCK processing. Biochem. Biophys. Res. Commun. 273, 188191.
  • Westphal C. H., Muller L., Zhou A., Zhu X., Bonner-Weir S., Schambelan M., Steiner D. F., Lindberg I. and Leder P. (1999) The neuroendocrine protein 7B2 is required for peptide processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell 96, 689700.
  • Williams G., Bing C., Cai X. J., Harrold J. A., King P. J. and Liu X. H. (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74, 683701.
  • Zhu X., Zhou A., Dey A., Norrbom C., Carroll R., Zhang C., Laurent V., Lindberg I., Ugleholdt R., Holst J. J. and Steiner D. F. (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc. Natl Acad. Sci. USA 99, 1029310298.
  • Zimanyi I. A. and Pelleymounter M. A. (2003) The role of melanocortin peptides and receptors in regulation of energy balance. Curr. Pharm. Des. 9, 627641.