SEARCH

SEARCH BY CITATION

References

  • Adrain C., Creagh E. M. and Martin S. J. (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J. 20, 66276636.
  • Alexandre A. and Lenhinger A. L. (1984) Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Biochim. Biophys. Acta 767, 120129.
  • Almeida A. and Medina J. M. (1998) A rapid method for the isolation of metabolically active mitochondria from rat neurones and astrocytes in primary culture. Brain Res. Protocols 2, 209214.
  • Ankarcrona M., Dypbukt J. M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S. A. and Nicotera P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961973.
  • Ardail D., Privat J.-P., Egret-Charlier M., Levrat C., Lerme F. and Louisott P. (1990) Mitochondrial contact sites. Lipid composition and dynamics. J. Biol. Chem. 265, 1879718802.
  • Atlante A., Passarella S., Quagliariello E., Moreno G. and Salet C. (1989) Haematoporphyrin derivative (Photofrin II) photosensitization of isolated mitochondria: inhibition of ADP/ATP translocator. J. Photochem. Photobiol. B 4, 3546.
  • Atlante A., Gagliardi S., Minervini G. M., Marra E., Passarella S. and Calissano P. (1996) Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells. Neuroreport 7, 25192523.
  • Atlante A., Gagliardi S., Minervini G. M., Ciotti M. T., Marra E. and Calissano P. (1997) Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J. Neurochem. 68, 20382045.
  • Atlante A., Gagliardi S., Marra E. and Calissano P. (1998) Neuronal apoptosis in rats is accompanied by rapid impairment of cellular respiration and is prevented by scavengers of reactive oxygen species. Neurosci. Lett. 245, 127130.
  • Atlante A., Gagliardi S., Marra E., Calissano P. and Passarella S. (1999) Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment. J. Neurochem. 73, 237246.
  • Atlante A., Calissano P., Bobba A., Azzariti A., Marra E. and Passarella S. (2000) Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurones undergoing excitotoxic death. J. Biol. Chem. 275, 3715937166.
  • Atlante A., Calissano P., Bobba A., Giannattasio S., Marra E. and Passarella S. (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 497, 15.
  • Atlante A., Bobba A., Calissano P., Passarella S. and Marra E. (2003) The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death. J. Neurochem. 84, 960971.
  • De Bari L., Atlante A., Guaragnella N., Principato G. and Passarella S. (2002) D-Lactate transport and metabolism in rat liver mitochondria. Biochem. J. 365, 391403.
  • Berry M. N., Edwards A. M. and Barritt G. J. (1991) Assessment of integrity of isolated hepatocytes, in, Laboratory Techniques in Chemistry and Molecular Biology. (Burdon, R. H. and Van Knippenberg, P. H., eds). Elsevier Sc. Publishers, New York. 21, pp. 83–98.
  • Bobba A., Atlante A., Giannattasio S., Sgaramella G., Calissano P. and Marra E. (1999) Early release and subsequent caspase-mediated degradation of cytochrome c in apoptotic cerebellar granule cells. FEBS Lett. 457, 126130.
  • Bobba A., Canu N., Atlante A., Petragallo V., Calissano P. and Marra E. (2002) Proteasome inhibitors prevent cytochrome c release during apoptosis but not in excitotoxic death of cerebellar granule neurones. FEBS Lett. 515, 812.
  • Bossy-Wetzel E., Newmeyer D. D. and Green D. R. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 3749.
  • Budd S. L. and Nicholls D. G. (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 67, 22822291.
  • Calissano P., Ciotti M. T., Battistini L., Zona C., Angelici A., Merlo D. and Mercanti D. (1993) Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells. Proc. Natl Acad. Sci. USA 90, 87528756.
  • Cande C., Cohen I., Daugas E., Ravagnan L., Larochette N., Zamzami N. and Kroemer G. (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84, 215222.
  • Canu N., Barbato C., Ciotti M. T., Serafino A., Dus L. and Calissano P. (2000) Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurones undergoing apoptosis. J. Neurosci. 20, 589599.
  • Choi D. W. (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Prog. Brain Res. 100, 4751.
  • Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689695.
  • D'Mello S. R., Galli C., Ciotti T. and Calissano P. (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl Acad. Sci. USA 90, 1098910993.
  • Desagher S. and Martinou J. C. (2000) Mitochondria as the central control point of apoptosis. Trends Cell. Biol. 10, 369377.
  • Du Y., Dodel R. C., Bales K. R., Jemmerson R., Hamilton-Byrd E. and Paul S. M. (1997) Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J. Neurochem. 69, 13821388.
  • Du C., Fang M., Li Y., Li L. and Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 3342.
  • Dugan L. L., Sensi S. L., Canzoniero L. M. T., Handran S. D., Rothman S. M., Lin T.-S., Goldberg M. P. and Choi D. W. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15, 63776388.
  • Ekert P. G., Silke J., Hawkins C. J., Verhagen A. M. and Vaux D. L. (2001) DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell. Biol. 152, 483490.
  • Errede B., Kamen M. D. and Hatefi Y. (1978) Preparation and properties of complex IV (ferrocytochrome c: oxygen oxidoreductase EC 1.9.3.1). Methods in Enzymol. LIII, 40–47.
  • Flower R. J., Moncada S. and Vanet J. R. (1985) The Pharmacological Bases of Therapeutics, (GoodmanA. G., GilmanL. S., RallT. W. and MuradF., eds), pp. 674715. McMillian, New York.
  • Gagliardi S., Atlante A. and Passarella S. (1997) A novel property of adenine nucleotides: sensitivity to helium-neon laser in mitochondrial reactions. Biochem. Mol. Biol. Int. 41, 449460.
  • Goldstein J. C., Waterhouse N. J., Juin P., Evan G. I. and Green D. R. (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell. Biol. 2, 156162.
  • Gorman A. M., Bonfoco E., Zhivotovsky B., Orrenius S. and Ceccatelli S. (1999) Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. Eur. J. Neurosci. 11, 10671072.
  • Goshorn S. C., Retzel E. and Jemmerson R. (1991) Common structural features among monoclonal antibodies binding the same antigenic region of cytochrome c. J. Biol. Chem. 266, 21342142.
  • Hampton M. B., Zhivotovsky B., Slater A. F., Burgess D. H. and Orrenius S. (1998) Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem. J. 329, 9599.
  • Hu Y., Benedict M. A., Wu D., Inohara N. and Nunez G. (1998) Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl Acad. Sci. USA 95, 43864391.
  • Hockenbery D., Nunez G., Milliman C., Schreiber R. D. and Korsmeyer S. J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334336.
  • Johnson J. W. and Ascher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529531.
  • Jürgensmejer J. M., Xie Z., Deveraux Q., Ellerby L., Bredesen D. and Reed C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 49975002.
  • Kantrow S. P. and Piantadosi C. A. (1997) Release of cytochrome c from liver mitochondria during permeability transition. Biochem. Biophys. Res. Commun. 232, 669671.
  • Kantrow S. P., Tatro L. G. and Piantadosi C. A. (2000) Oxidative stress and adenine nucleotide control of mitochondrial permeability transition. Free Radic. Biol. Med. 28, 251260.
  • Kluck R. M., Bossy-Wetzel E., Green D. R. and Newmeyer D. D. (1997a) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 11321136.
  • Kluck R. M., Martin S. J., Hoffman B. M., Zhou J. S., Green D. R. and Newmeyer D. D. (1997b) Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 46394649.
  • Krohn A. J., Wahlbrink T. and Prehn J. H. (1999) Mitochondrial depolarization is not required for neuronal apoptosis. J. Neurosci. 19, 73947404.
  • Lafon-Cazal M., Pietri S., Culcasi M. and Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535537.
  • LaNoue F. K. and Schoolwerth A. C. (1984) Metabolite transport in mammalian mitochondria, in Bioenergetics ErnsterL., ed.). Elsevier, Amsterdam, pp. 221261.
  • Levi G., Aloisi F., Ciotti M. T. and Gallo V. (1984) Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 290, 7786.
  • Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S. and Wang X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479489.
  • Lienhard G. E. and Secemski I. I. (1973) P1,P5-Di (adenosine-5′) pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J. Biol. Chem. 248, 11211123.
  • Liu X., Kim C. N., Yang J., Jemmerson R. and Wang X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome. C. Cell 86, 147157.
  • Van Loo G., Schotte P., Van Gurp M., Demol H., Hoorelbeke B., Gevaert K., Rodriguez I., Ruiz-Carrillo A., Vandekerckhove J., Declercq W., Beyaert R. and Vandenabeele P. (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell. Death Differ. 8, 11361142.
  • Minervini G. M., Atlante A., Gagliardi S., Ciotti T. M., Marra E. and Calissano P. (1997) Glutamate stimulates 2-deoxyglucose uptake uptake in rat cerebellar granule cells. Brain Res. 768, 5762.
  • Neame S. J., Rubin L. L. and Philpott K. L. (1998) Blocking cytochrome c activity within intact neurons inhibits apoptosis. J. Cell. Biol. 142, 15831593.
  • Nicholls D. G. (1982) Bioenergetics . Academic Press, London.
  • Nicholls D. G. and Budd S. L. (1998) Mitochondria and neuronal glutamate excitotoxicity. Biochim. Biophys. Acta. 1366, 97112.
  • Nicotera P., Leist M., Fava E., Berliocchi L. and Volbracht C. (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol. 10, 276282.
  • Ott M., Robertson J. D., Gogvadze V., Zhivotovsky B. and Orrenius S. (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl Acad. Sci. USA 99, 12591263.
  • Passarella S., Ostuni A., Atlante A. and Quagliariello E. (1988) Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser. Biochem. Biophys. Res. Commun. 156, 978986.
  • Passarella. S., Atlante A. and Quagliariello E. (1990) Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process. Eur. J. Biochem. 193, 221227.
  • Patterson S. D., Spahr C. S., Daugas E., Susin S. A., Irinopoulou T., Koehler C. and Kroemer G. (2000) Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell. Death Differ. 7, 137144.
  • Perkins G. A., Renken C. W., Frey T. G. and Ellisman M. H. (2001) Membrane architecture of mitochondria in neurons of the central nervous system. J. Neurosci. Res. 66, 857865.
  • Petit P. X., Goubern M., Diolez P., Susin S. A., Zamzami N. and Kroemer G. (1998) Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett. 426, 111116.
  • Schinder A. F., Olson E. C., Spitzer N. C. and Montal M. (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 1, 61256133.
  • Scorrano L., Ashiya M., Buttle K., Weiler S., Oakes S. A., Mannella C. A. and Korsmeyer S. J. (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell. 2, 5567.
  • Shimizu S., Narita M. and Tsujimoto Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483487.
  • Sjodin R. A. (1989) Measurement of Na+--K+ pump in muscle. Meth Enzymol. 173, 695714.
  • Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Brenner C., Larochette N., Prevost M. C., Alzari P. M. and Kroemer G. (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381394.
  • Ueda S., Nakamura H., Masutani H., Sasada T., Yonehara S., Takabayashi A., Yamaoka Y. and Yodoi J. (1998) Redox regulation of caspase-3 (-like) protease activity: regulatory roles of thioredoxin and cytochrome. C. J. Immunol. 161, 66896695.
  • Vieira H. L., Haouzi D., El Hamel C., Jacotot E., Belzacq A. S., Brenner C. and Kroemer G. (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell. Death Differ. 7, 11461154.
  • Volontè C., Ciotti M. T. and Battistini L. (1994) Development of a method for measuring cell number: application to CNS primary neuronal cultures. Citometry 17, 274276.
  • Waddel W. J. and Hill C. (1956) A simple ultraviolet spectrophotometer method for the determination of protein. J. Laboratory Clin. Med. 48, 311314.
  • Waterhouse N. J., Goldstein J. C., Von Ahsen O., Schuler M., Newmeyer D. D. and Green D. R. (2001) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell. Biol. 153, 319328.
  • Wieckowski M. R., Vyssokikh M., Dymkowska D., Antonsson B., Brdiczka D. and Wojtczak L. (2001) Oligomeric C-terminal truncated Bax preferentially releases cytochrome c but not adenylate kinase from mitochondria, outer membrane vesicles and proteoliposomes. FEBS Lett. 505, 453459.
  • Wigdal S. S., Kirkland R. A., Franklin J. L. and Haak-Frendscho M. (2002) Cytochrome c release precedes mitochondrial membrane potential loss in cerebellar granule neuron apoptosis: lack of mitochondrial swelling. J. Neurochem. 82, 10291038.
  • Zamzami N. and Kroemer G. (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell. Biol. 2, 6771.
  • Zou H., Henzel W. J., Liu X., Lutschg A. and Wang X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405413.