SEARCH

SEARCH BY CITATION

References

  • Beato M., Groot-Kormelink P. J., Colquhoun D. and Sivilotti L. G. (2002) Openings of the rat recombinant α1 homomeric glycine receptor as a function of the number of agoinst molecules bound. J. Gen. Physiol. 119, 443466.
  • Bertrand D., Devillers-Thiery A., Revah F., Galzi J. L., Hussy N., Mulle C., Bertrand S., Ballivet M. and Changeux J. P. (1992) Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl Acad. Sci. USA 89, 12611265.
  • Bertrand S., Devillers-Thiery A., Palma E., Buisson B., Edelstein S. J., Corringer P. J., Changeux J. P. and Bertrand D. (1997) Paradoxical allosteric effects of competitive inhibitors on neuronal alpha7 nicotinic receptor mutants. Neuroreport 8, 35913596.
  • Bianchi M. T. and Macdonald R. L. (2001) Mutation of the 9′ leucine in the GABAA receptor γ2L subunit produces an apparent decrease in desensitization by stabilizing open states without altering desensitized states. Neuropharmacol. 41, 737744.
  • Blanton M. P., Dangott L. J., Raja S. K., Lala A. K. and Cohen J. B. (1998) Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound-3H-diazofluorene. J. Biol. Chem. 273, 86598668.
  • Bormann J., Rundstrom N., Betz H. and Langosch D. (1993) Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 12, 37293737.
  • Chang Y. and Weiss D. S. (1998) Substitutions of the highly conserved M2 leucine create spontaneously opening ρ1 γ-aminobutyric acid receptors. Mol. Pharmacol. 53, 511523.
  • Chang Y. and Weiss D. S. (1999) Allosteric activation mechanism of the α1β2γ2-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine. Biophys. J. 77, 25422551.
  • Chen J. and Auerbach A. (1998) A distinct contribution of the delta subunit to acetylcholine receptor channel activation revealed by mutations of the M2 segment. Biophys. J. 75, 218225.
  • Colquhoun D. (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924947.
  • Corringer P. J., Le Novere N. and Changeux J. P. (2000) Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431458.
  • Dalziel J. E., Cox G. B., Gage P. W. and Birnir B. (2000) Mutating the highly conserved second membrane-spanning 9′ leucine residue in the α1 or β1 subunit produces subunit-specific changes in the function of human α1β1γ-aminobutyric acidA receptors. Mol. Pharmacol. 57, 875882.
  • Devillers-Thiery A., Galzi J. L., Bertrand S., Changeux J. P. and Bertrand D. (1992) Stratified organization of the nicotinic acetylcholine receptor channel. Neuroreport 3, 10011004.
  • Filatov G. N. and White M. M. (1995) The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol. Pharmacol. 48, 379384.
  • Galzi J. L., Revah F., Bouet F., Menez A., Goeldner M., Hirth C. and Changeux J. P. (1991) Allosteric transitions of the acetylcholine receptor probed at the amino acid level with a photolabile cholinergic ligand. Proc. Natl Acad. Sci. USA 88, 50515055.
  • Gisselmann G., Pusch H., Hovemann B. T. and Hatt H. (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat. Neurosci. 5, 1112.
  • Grenningloh G., Pribilla I., Prior P., Multhaup G., Beyreuther K., Taleb O. and Betz H. (1990) Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4, 963970.
  • Grosman C. and Auerbach A. (2000) Asymmetric and independent contribution of the second transmembrane segment 12′ residues to diliganded gating of acetylcholine receptor channels: a single-channel study with choline as the agonist. J. General Physiol. 115, 637651.
  • Handford C. A., Lynch J. W., Baker E., Webb G. C., Ford J. H., Sutherland G. R. and Schofield P. R. (1996) The human glycine receptor β subunit: primary structure, functional characterisation and chromosomal localisation of the human and murine genes. Mol. Brain Res. 35, 211219.
  • Hatton C. J., Shelley C., Brydson M., Beeson D. and Colquhoun D. (2003) Properties of the human muscle nicotinic receptor, and of the slow–channel myasthenic syndrome mutant εL221F, inferred from maximum likelihood kinetics. J. Physiol. (Lond.) 547, 729760.
  • Karlin A. (2002) Emerging structure of the nicotinic receptors. Nat. Neurosci. 3, 102114.
  • Kuhse J., Laube B., Magalei D. and Betz H. (1993) Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 11, 10491056.
  • Kuhse J., Betz H. and Kirsch J. (1995) The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol. 5, 318323.
  • Labarca C., Nowak M. W., Zhang H., Tang L., Deshpande P. and Lester H. A. (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376, 514516.
  • Langosch D., Thomas L. and Betz H. (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl Acad. Sci. USA 85, 73947398.
  • Langosch D., Laube B., Rundstron N., Schmieden V., Bormann J. and Betz H. (1994) Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO J. 13, 42234228.
  • Lewis T. M., Sivilotti L. G., Colquhoun D., Gardiner R. M., Schoepfer R. and Rees M. (1998) Properties of human glycine receptors containing the hyperekplexia mutation alpha1 (K276E), expressed in Xenopus oocytes. J. Physiol. (Lond.) 507, 2540.
  • Lynch J. W., Rajendra S., Pierce K. D., Handford C. A., Barry P. H. and Schofield P. R. (1997) Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO J. 16, 110120.
  • Lynch J. W., Han R. N. L., Haddrill J., Pierce K. D. and Schofield P. R. (2001) The surface accessibility of the glycine receptor M2–M3 loop is increased in the channel open state. J. Neurosci. 21, 25892599.
  • Maksay G., Laube B. and Betz H. (2001) Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology 41, 369376.
  • Meyer G., Kirsch J., Betz H. and Langosch D. (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15, 563572.
  • Pribilla I., Takagi T., Langosch D., Bormann J. and Betz H. (1992) The atypical M2 segment of the β subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 11, 43054311.
  • Rajendra S., Lynch J. W., Pierce K. D., French P. W., Barry P. H. and Schofield P. R. (1994) Startle disease mutations reduce the agonist sensitivity of the human inhibitory glycine receptor. J. Biol. Chem. 269, 1873918742.
  • Rajendra S., Vandenberg R. J., Pierce K. D., Cunningham A. M., French P. W., Barry P. H. and Schofield P. R. (1995) The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element. EMBO J. 14, 29872998.
  • Rajendra S., Lynch J. W. and Schofield P. R. (1997) The glycine receptor. Pharmacol. Ther. 73, 121146.
  • Rees M. I., Lewis T. M., Kwok J. B., Mortier G. R., Govaert P., Snell R. G., Schofield P. R. and Owen M. J. (2002) Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum. Mol. Genet. 11, 853860.
  • Revah F., Bertrand D., Galzi J. L., Devillers-Thiery A., Mulle C., Hussy N., Bertrand S., Ballivet M. and Changeux J. P. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846849.
  • Rundstrom N., Schmieden V., Betz H., Bormann J. and Langosch D. (1994) Cyanotriphenylborate: subtype-specific blocker of glycine receptor chloride channels. Proc. Natl Acad. Sci. USA 91, 89508954.
  • Shan Q., Haddrill J. L. and Lynch J. W. (2001) A single β subunit M2 domain residue controls the picrotoxin sensitivity of αβ heteromeric glycine receptor chloride channels. J. Neurochem. 76, 11091120.
  • Shan Q., Haddrill J. L. and Lynch J. W. (2002) Comparative surface accessibility of a pore-lining threonine residue (T6′) in the glycine and GABAA receptors. J. Biol. Chem. 277, 4484544853.
  • Steinbach J. H., Bracamontes J., Yu L., Zhang P. and Covey D. F. (2000) Subunit-specific action of an anticonvulsant thiobutyrolactone on recombinant glycine receptors involves a residue in the M2 membrane-spanning domain. Mol. Pharmacol. 58, 1117.
  • Supplisson S. and Chesnoy-Marchais D. (2000) Glycine receptor β subunits play a critical role in potentiation of glycine responses by ICS-205,930. Mol. Pharmacol. 58, 763770.
  • Thompson S. A., Smith M. Z., Wingrove P. B., Whiting P. J. and Wafford K. A. (1999) Mutation at the putative GABAA ion-channel gate reveals changes in allosteric modulation. Br. J. Pharmacol. 127, 13491358.
  • Unwin N. (1995) Acetylcholine receptor channel imaged in the open state. Nature 373, 3743.
  • Wang H. L., Auerbach A., Bren N., Ohno K., Engel A. G. and Sine S. M. (1997) Mutation in the M1 domain of the acetylcholine receptor a subunit decreases the rate of agonist dissociation. J. Gen. Physiol. 109, 757766.