SEARCH

SEARCH BY CITATION

References

  • Adell A. and Artigas F. (1998) A microdialysis study of the in vivo release of 5-HT in the median raphe nucleus of the rat. Br. J. Pharmacol. 125, 13611367.
  • Adell A. and Artigas F. (1999) Regulation of the release of 5-hydroxytryptamine in the median raphe nucleus of the rat by catecholaminergic afferents. Eur. J. Neurosci. 11, 23052311.
  • Aghajanian G. K. and Marek G. J. (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589599.
  • Aghajanian G. K. and Marek G. J. (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer v pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 825, 161171.
  • Aghajanian G. K. and Wang R. Y. (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res. 122, 229242.
  • Andreasen N. C., O'Leary D. S., Flaum M., Nopoulos P., Watkins G. L., Boles Ponto L. L. and Hichwa R. D. (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349, 17301734.
  • Araneda R. and Andrade R. (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 399412.
  • Arnt J. and Skarsfeldt T. (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18, 63101.
  • Ashby C. R., Edwards E. and Wang R. Y. (1994) Electrophysiological evidence for a functional interaction between 5-HT(1A) and 5-HT(2A) receptors in the rat medial prefrontal cortex: An iontophoretic study. Synapse 17, 173181.
  • Au-Young S. M., Shen H. and Yang C. R. (1999) Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse 34, 245255.
  • Azmitia E. C. and Segal M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 179, 641668.
  • Baraban J. M. and Aghajanian G. K. (1980) Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19, 355363.
  • Bartrup J. T. and Newberry N. R. (1994) 5-HT2A receptor-mediated outward current in C6 glioma cells is mimicked by intracellular IP3 release. Neuroreport 5, 12451248.
  • Berendse H. W. and Groenewegen H. J. (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42, 73102.
  • Berg K. A., Maayani S., Goldfarb J., Scaramellini C., Leff P. and Clarke W. P. (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol. Pharmacol. 54, 94104.
  • Bortolozzi A. and Artigas F. (2003) Control of 5-hydroxytryptamine release in the dorsal raphe nucleus by the noradrenergic system in rat brain: role of α-adrenoceptors. Neuropsychopharmacology 28, 421434.
  • Bortolozzi A., Amargós-Bosch M., Adell A., Díaz-Mataix L., Serrats J., Pons S. and Artigas F. (2003) In vivo modulation of 5-HT release in mouse prefrontal cortex by local 5-HT2A receptors: effect of antipsychotic drugs. Eur. J. Neurosci. 18, 12351246.
  • Bylund D. B. and U'Prichard D. C. (1983) Characterization of alpha 1- and alpha 2-adrenergic receptors. Int. Rev. Neurobiol. 24, 343431.
  • Bymaster F., Perry K. W., Nelson D. L., Wong D. T., Rasmussen K., Moore N. A. and Calligaro D. O. (1999) Olanzapine: a basic science update. Br. J. Psychiatry Suppl. 37, 3640.
  • Casanovas J. M., Hervás I. and Artigas F. (1999) Postsynaptic 5-HT1A receptors control 5-HT release in the rat medial prefrontal cortex. Neuroreport 10, 14411445.
  • Casanovas J. M., Berton O., Celada P. and Artigas F. (2000) In vivo actions of the selective 5-HT1A receptor agonist BAY x, 3702 on serotonergic cell firing and release. Naunyn Schmied. Arch. Pharmacol. 362, 248254.
  • Celada P., Puig M. V., Casanovas J. M., Guillazo G. and Artigas F. (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 21, 99179929.
  • Claro E., Fain J. N. and Picatoste F. (1993) Noradrenaline stimulation unbalances the phosphoinositide cycle in rat cerebral cortical slices. J. Neurochem. 60, 20782086.
  • Day H. E., Campeau S., Watson S. J. and Akil H. (1997) Distribution of alpha-1A, alpha-1B and alpha-1D-adrenergic receptor mRNA in the rat brain and spinal cord. J. Chem. Neuroanat. 13, 115139.
  • De Felipe J., Arellano J. I., Gomez A., Azmitia E. C. and Munoz A. (2001) Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J. Comp. Neurol. 433, 148155.
  • Devilbiss D. M. and Waterhouse B. D. (2000) Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse 37, 273282.
  • De Vry J., Schohe-Loop R., Heine H. G., Greuel J. M., Mauler F., Schmidt B., Sommermeyer H. and Glaser T. (1998) Characterization of the aminomethylchroman derivative BAY x, 3702 as a highly potent 5-hydroxytryptamine (1A) receptor agonist. J. Pharmacol. Exp. Ther. 284, 10821094.
  • Domyancic A. V. and Morilak D. A. (1997) Distribution of alpha1A adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J. Comp. Neurol. 386, 358378.
  • Drevets W. C., Price J. L., Simpson J. R., Todd R. D., Reich T., Vannier M. and Raichle M. E. (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824827.
  • Durstewitz D., Seamans J. K. and Sejnowski T. J. (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83, 17331750.
  • Dursun S. M. and Handley S. L. (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5HT2A receptors are active under physiological conditions. Psychopharmacology 128, 198205.
  • Fuster J. M. (1997) The Prefrontal Cortex. Anatomy, Physiology and Neuropsychology of the Frontal Lobe. Lipincott Raven, Philadelphia, New York.
  • Hagberg G. B., Blomstrand F., Nilsson M., Tamir H. and Hansson E. (1998) Stimulation of 5-HT2A receptors on astrocytes in primary culture opens voltage-independent Ca2+ channels. Neurochem. Int. 32, 153162.
  • Hajós M., Richards C. D., Szekely A. D. and Sharp T. (1998) An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87, 95108.
  • Hein P., Goepel M., Cotecchia S. and Michel M. C. (2001) A quantitative analysis of antagonism and inverse agonism at wild-type and constitutively active hamster alpha1B-adrenoceptors. Naunyn. Schmied. Arch. Pharmacol. 363, 3439.
  • Hervás I., Queiroz C. M., Adell A. and Artigas F. (2000) Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. Br. J. Pharmacol. 130, 160166.
  • Ichikawa J., Ishii H., Bonaccorso S., Fowler W. L., O'Laughlin I. A. and Meltzer H. Y. (2001) 5-HT2A and D-2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J. Neurochem. 76, 15211531.
  • Jakab R. L. and Goldman-Rakic P. S. (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl Acad. Sci. USA 95, 735740.
  • Jakab R. L. and Goldman-Rakic P. S. (2000) Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J. Comp. Neurol. 417, 337348.
  • Jodo E., Chiang C. and Aston-Jones G. (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83, 6379.
  • Kia H. K., Brisorgueil M. J., Hamon M., Calas A. and Vergé D. (1996) Ultrastructural localization of 5-hydroxytryptamoine1A receptors in the rat brain. J. Neurosci. Res. 46, 697708.
  • Kosofsky B. E. and Molliver M. E. (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1, 153168.
  • Kroeze W. K. and Roth B. L. (1998) The molecular biology of serotonin receptors: therapeutic implications for the interface of mood and psychosis. Biol. Psychiatry 44, 11281142.
  • Kuroda M., Yokofujita J. and Murakami K. (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog. Neurobiol. 54, 417458.
  • Lewis D. A. and Lieberman J. A. (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28, 325334.
  • Lewis B. L. and O'Donnell P. (2000) Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D(1) dopamine receptors. Cereb. Cortex 10, 11681175.
  • Lidow M. S., Williams G. V. and Goldman-Rakic P. S. (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol. Sci. 19, 136140.
  • Marangell L. B., Johnson C. R., Kertz B., Zboyan H. A. and Martinez J. M. (2002) Olanzapine in the treatment of apathy in previously depressed participants maintained with selective serotonin reuptake inhibitors: an open-label, flexible-dose study. J. Clin. Psychiatry 63, 391395.
  • Marek G. J. and Aghajanian G. K. (1999) 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur. J. Pharmacol. 367, 197206.
  • Marek G. J., Wright R. A., Gewitz J. C. and Schoepp D. D. (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in neocortex. Neuroscience 105, 379392.
  • Martín-Ruiz R., Puig M. V., Celada P., Shapiro D. A., Roth B. L., Mengod G. and Artigas F. (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J. Neurosci. 21, 98569866.
  • McCormick D. A., Wang Z. and Huguenard J. (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb. Cortex 3, 387398.
  • McCune S. K., Voigt M. M. and Hill J. M. (1993) Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain. Neuroscience 57, 143151.
  • Meltzer H. Y. (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21, S106S115.
  • Millan M. J. (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J. Pharmacol. Exp. Ther. 295, 853861.
  • Miller E. K. and Cohen J. D. (2001) An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167202.
  • Miner L. A. H., Backstrom J. R., Sanders-Bush E. and Sesack S. R. (2003) Ultrastructural localization of serotonin-2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116, 107117.
  • Molderings G. J., Donecker K., Burian M., Simon W. A., Schroder D. W. and Gothert M. (1998) Characterization of I2 imidazoline and sigma binding sites in the rat and human stomach. J. Pharmacol. Exp. Ther. 285, 170177.
  • Molinoff P. B. (1984) Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation. Drugs 28, 115.
  • Mouradian R. D., Sessler F. M. and Waterhouse B. D. (1991) Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: evidence for mediation by an alpha-1 receptor-linked second messenger pathway. Brain. Res. 546, 8395.
  • Murase S., Grenhoff J., Chouvet G., Gonon F. G. and Svensson T. H. (1993) Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci. Lett. 157, 5356.
  • Ostroff R. B. and Nelson J. C. (1999) Risperidone augmentation of selective serotonin reuptake inhibitors in major depression. J. Clin. Psychiatry 60, 256259.
  • Palacios J. M., Cortés R. and Hoyer D. (1987) Alpha1-adrenoceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Res. 419, 6575.
  • Paxinos G. and Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney.
  • Pazos A., Cortes R. and Palacios J. M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain: II. serotonin-2 receptors. Brain Res. 346, 231249.
  • Petralia R. S. and Wenthold R. J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318, 329354.
  • Peyron C., Petit J. M., Rampon C., Jouvet M. and Luppi P. H. (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82, 443468.
  • Pieribone V. A., Nicholas A. P., Dagerlind A. and Hökfelt T. (1994) Distribution of alpha1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J. Neurosci. 14, 42524268.
  • Porter R. H. P., Benwell K. R., Lamb H., Malcolm C. S., Allen N. H., Revell D. F., Adams D. R. and Sheardown M. J. (1999) Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br. J. Pharmacol. 128, 1320.
  • Puig M. V., Celada P., Díaz-Mataix L. and Artigas F. (2003) In vivo modulation of the activity of pyramidal neruons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb. Cortex 13, 870882.
  • Rouquier L., Claustre Y. and Benavides J. (1994) α1-Adrenoceptor antagonists differentially control serotonin release in the hippocampus and striatum: a microdialysis study. Eur. J. Pharmacol. 261, 5964.
  • Ruffolo R. R. and Waddell J. E. (1982) Receptor interactions of imidazolines: IX. cirazoline is an alpha-1 adrenergic agonist and an alpha-2 adrenergic antagonist. J. Pharmacol. Exp. Ther. 222, 2936.
  • Sakai K. and Crochet S. (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake–sleep states. Neuroscience 104, 11411155.
  • Sara S. J. and Hervé-Minvielle A. (1995) Inhibitory influence of frontal cortex on locus coeruleus neurons. Proc. Natl Acad. Sci. USA 92, 60326036.
  • Sato H., Fox K. and Daw N. W. (1989) Effect of electrical stimulation of locus coeruleus on the activity of neurons in the cat visual cortex. J. Neurophysiol. 62, 946958.
  • Schreiber R., Brocco M., Audinot V., Gobert A., Veiga S. and Millan M. J. (1995) (1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT)2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J. Pharmacol. Exp. Ther. 273, 101112.
  • Sebban C., Tesolin-Decros B., Millan M. J. and Spedding M. (1999) Contrasting EEG profiles elicited by antipsychotic agents in the prefrontal cortex of the conscious rat: antagonism of the effects of clozapine by modafinil. Br. J. Pharmacol. 128, 10551063.
  • Sesack S. R. and Pickel V. M. (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol. 320, 145160.
  • Sesack S. R., Deutch A. Y., Roth R. H. and Bunney B. S. (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213242.
  • Shelton R. C., Tollefson G. D., Tohen M., Stahl S., Gannon K. S., Jacobs T. G., Buras W. R., Bymaster F. P., Zhang W., Spencer K. A. et al. (2001) A novel augmentation strategy for treating resistant major depression. Am. J. Psychiatry 158, 131134.
  • Takagishi M. and Chiba T. (1991) Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res. 566, 2639.
  • Tao R., Ma Z. Y. and Auerbach S. B. (2000) Differential effect of local infusion of serotonin reuptake inhibitors in the raphe versus forebrain and the role of depolarization-induced release in increased extracellular serotonin. J. Pharmacol. Exp. Ther. 294, 571579.
  • Thierry A. M., Deniau J. M., Chevalier G., Ferron A. and Glowinski J. (1983) An electrophysiological analysis of some afferent and efferent pathways of the rat prefrontal cortex. Prog. Brain Res. 58, 257261.
  • Van der Werf Y. D., Witter M. P. and Groenewegen H. J. (2002) The intralaminar and midline nuclei of the thalamus: anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 39, 107140.
  • Varga V., Szekely A. D., Csillag A., Sharp T. and Hajos M. (2001) Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurons. Neuroscience 106, 783792.
  • Vysokanov A., Flores-Hernandez J. and Surmeier D. J. (1998) mRNAs for clozapine-sensitive receptors co-localize in rat prefrontal cortex neurons. Neurosci. Lett. 258, 179182.
  • Wadenberg M. L., Hertel P., Fernhom R., Hygge Blakeman K., Ahlenius S. and Svensson T. H. (2000) Enhancement of antipsychotic-like effects by combined treatment with the α1-adrenoceptor antagonist prazosin and the dopamine D2 receptor antagonist raclopride in rats. J. Neural Transm. 107, 12291238.
  • Weinberger D. R., Aloia M. S., Goldberg T. E. and Berman K. F. (1994) The frontal lobes and schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6, 419427.
  • West A. R. and Grace A. A. (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J. Neurosci. 22, 294304.
  • Willins D. L., Deutch A. Y. and Roth B. L. (1997) Serotonin 5HT2A receptors are expressed on pyramidal neurons and interneurons in the rat cortex. Synapse 27, 7982.
  • Zhu J., Taniguchi T., Takauji R., Suzuki F., Tanaka T. and Muramatsu I. (2000) Inverse agonism and neutral antagonism at a constitutively active alpha-1A adrenoceptor. Br. J. Pharmacol. 131, 546552.