SEARCH

SEARCH BY CITATION

References

  • Arendt T., Bruckner M. K., Lange M. and Bigl V. (1992) Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic development – a study of molecular forms. Neurochem. Int. 21, 381396.
  • Atack J. R., Perry E. K., Bonham J. R., Perry R. H., Tomlinson B. E., Blessed G. and Fairbairn A. (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci. Lett. 40, 199204.
  • Birikh K. R., Sklan E. H., Shoham S. and Soreq H. (2003) Interaction of ‘readthrough’ acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc. Natl Acad. Sci. USA 100, 283288.
  • Chitlaru T., Kronman C., Velan B. and Shafferman A. (2002) Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time. Biochem. J. 363, 619631.
  • Chubb I. W., Goodman S. and Smith A. D. (1976) Is acetylcholinesterase secreted from central neurons into the cerebral fluid? Neuroscience. 1, 5762.
  • Cohen O., Erb C., Ginzberg D., Pollak Y., Seidman S., Shoham S., Yirmiya R. and Soreq H. (2002) Neuronal overexpression of ‘readthrough’ acetylcholinesterase is associated with antisense-suppressible behavioral impairments. Mol.Psychiatry 7, 874885.
  • Darreh-Shori T., Almkvist O., Guan Z. Z., Garlind A., Strandberg B., Svensson A. L., Soreq H., Hellstrom-Lindahl E. and Nordberg A. (2002) Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 59, 563572.
  • Davidsson P., Blennow K., Andreasen N., Eriksson B., Minthon L. and Hesse C. (2001) Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer's disease. Neurosci. Lett. 300, 157160.
  • Enz A., Boddeke H., Gray J. and Spiegel R. (1991) Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann. NY Acad. Sci. 640, 272275.
  • Fishman E. B., Siek G. C., MacCallum R. D., Bird E. D., Volicer L. and Marquis J. K. (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann. Neurol. 19, 246252.
  • Flores-Flores C., Martinez-Martinez A., Munoz-Delgado E. and Vidal C. J. (1996) Conversion of acetylcholinesterase hydrophilic tetramers into amphiphilic dimers and monomers. Biochem. Biophys. Res. Commun. 219, 5358.
  • Folstein M. F., Folstein S. E. and McHugh P. R. (1975) ‘Mini-mental state’: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatric Res. 12, 189198.
  • Giacobini E. (1997) From molecular structure to Alzheimer therapy. Jpn J. Pharmacol. 74, 225241.
  • Giacobini E. (1998) Invited review: cholinesterase inhibitors for Alzheimer's disease therapy: from tacrine to future applications. Neurochem. Int. 32, 413419.
  • Giacobini E. (2000) Cholinesterase inhibitors stabilize Alzheimer's disease. Ann. NY Acad. Sci. 920, 321327.
  • Grisaru D., Deutsch V., Shapira M., Pick M., Sternfeld M., Melamed-Book N., Kaufer D., Galyam N., Gait M. J., Owen D. et al. (2001) ARP, a peptide derived from the stress-associated acetylcholinesterase variant, has hematopoietic growth promoting activities. Mol. Med. 7, 93105.
  • Grisaru D., Sternfeld M., Eldor A., Glick D. and Soreq H. (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 264, 672686.
  • Von Der Kammer H., Mayhaus M., Albrecht C., Enderich J., Wegner M. and Nitsch R. M. (1998) Muscarinic acetylcholine receptors activate expression of the EGR gene family of transcription factors. J. Biol. Chem. 273, 1453814544.
  • Kaufer D., Friedman A., Seidman S. and Soreq H. (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393, 373377.
  • Kaufer D., Friedman A., Seidman S. and Soreq H. (1999) Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem. Biol. Interact. 119–120, 349360.
  • Kronman C., Chitlaru T., Elhanany E., Velan B. and Shafferman A. (2000) Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins: demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J. Biol. Chem. 275, 2948829502.
  • Li Y., Camp S., Rachinsky T. L., Getman D. and Taylor P. (1991) Gene structure of mammalian acetylcholinesterase: alternative exons dictate tissue-specific expression. J. Biol. Chem. 266, 2308323090.
  • Liao J., Norgaard-Pedersen B. and Brodbeck U. (1993) Subunit association and glycosylation of acetylcholinesterase from monkey brain. J. Neurochem. 61, 11271134.
  • Marutle A., Warpman U., Bogdanovic N., Lannfelt L. and Nordberg A. (1999) Neuronal nicotinic receptor deficits in Alzheimer patients with the Swedish amyloid precursor protein 670/671 mutation. J. Neurochem. 72, 11611169.
  • Massoulie J., Anselmet A., Bon S., Krejci E., Legay C., Morel N. and Simon S. (1998) Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J. Physiol. Paris 92, 183190.
  • Meshorer E., Erb C., Gazit R., Pavlovsky L., Kaufer D., Friedman A., Glick D., Ben-Arie N. and Soreq H. (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295, 508512.
  • Nitsch R. M., Rossner S., Albrecht C., Mayhaus M., Enderich J., Schliebs R., Wegner M., Arendt T. and Von Der Kammer H. (1998) Muscarinic acetylcholine receptors activate the acetylcholinesterase gene promoter. J. Physiol. Paris 92, 257264.
  • Nordberg A. and Svensson A. L. (1998) Cholinesterase inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology. Drug Saf. 19, 465480.
  • Nordberg A., Lilja A., Lundqvist H., et al. (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol. Aging 13, 747758.
  • Nordberg A., Lundqvist H., Hartvig P., Andersson J., Johansson M., Hellstrom-Lindahi E. and Langstrom B. (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment. Dement. Geriatr. Cogn. Disord. 8, 7884.
  • Nordberg A., Amberla K., Shigeta M., et al. (1998) Long-term tacrine treatment in three mild Alzheimer patients: effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis. Assoc. Disord. 12, 228237.
  • Nordberg A., Hellström-Lindahl E., Almkvist O. and Meurling L. (1999) Activity of acetylcholinesterase in CSF increases in Alzheimer's patients after treatment with tacrine. Alzheimer's Rep. 2, 347352.
  • Perrier A. L., Massoulie J. and Krejci E. (2002) PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 33, 275285.
  • Perry E. K., Smith C. J., Court J. A., Bonham J. R., Rodway M. and Atack J. R. (1988) Interaction of 9-amino-1,2,3,4-tetrahydroaminoacridine (THA) with human cortical nicotinic and muscarinic receptor binding in vitro. Neurosci. Lett. 91, 211216.
  • Saez-Valero J., Sberna G., McLean C. A. and Small D. H. (1999) Molecular isoform distribution and glycosylation of acetylcholinesterase are altered in brain and cerebrospinal fluid of patients with Alzheimer's disease. J. Neurochem. 72, 16001608.
  • Saez-Valero J., Barquero M. S., Marcos A., McLean C. A. and Small D. H. (2000) Altered glycosylation of acetylcholinesterase in lumbar cerebrospinal fluid of patients with Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 69, 664667.
  • Shapira M., Tur-Kaspa I., Bosgraaf L., Livni N., Grant A. D., Grisaru D., Korner M., Ebstein R. P. and Soreq H. (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet. 9, 12731281.
  • Shohami E., Kaufer D., Chen Y., Seidman S., Cohen O., Ginzberg D., Melamed-Book N., Yirmiya R. and Soreq H. (2000) Antisense prevention of neuronal damages following head injury in mice. J. Mol. Med. 78, 228236.
  • Siek G. C., Katz L. S., Fishman E. B., Korosi T. S. and Marquis J. K. (1990) Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol. Psychiatry 27, 573580.
  • Soreq H. and Seidman S. (2001) Acetylcholinesterase – new roles for an old actor. Nat. Rev. Neurosci. 2, 294302.
  • Stefanova E., Blennow K., Almkvist O., Hellstrom-Lindahl E. and Nordberg A. (2003) Cerebral glucose metabolism, cerebrospinal fluid-beta-amyloid1–42 (CSF- Abeta42), tau and apolipoprotein E genotype in long-term rivastigmine and tacrine treated Alzheimer disease (AD) patients. Neurosci. Lett. 338, 159163.
  • Sternfeld M., Shoham S., Klein O., Flores-Flores C., Evron T., Idelson G. H., Kitsberg D., Patrick J. W. and Soreq H. (2000) Excess ‘read-through’ acetylcholinesterase attenuates but the ‘synaptic’ variant intensifies neurodeterioration correlates. Proc. Natl Acad. Sci. USA 97, 86478652.
  • Svensson A. L. and Nordberg A. (1996) Tacrine interacts with an allosteric activator site on alpha 4 beta 2 nAChRs in M10 cells. Neuroreport 7, 22012205.
  • Svensson A. L., Zhang X. and Nordberg A. (1996) Biphasic effect of tacrine on acetylcholine release in rat brain via M1 and M2 receptors. Brain Res. 726, 207212.
  • Swaab D. F., Hofman M. A., Lucassen P. J., Salehi A. and Uylings H. B. (1994) Neuronal atrophy, not cell death, is the main hallmark of Alzheimer's disease. Neurobiol. Aging. 15, 369371; discussion 379–380.
  • Tomkins O., Kaufer D., Korn A., Shelef I., Golan H., Reichenthal E., Soreq H. and Friedman A. (2001) Frequent blood–brain barrier disruption in the human cerebral cortex. Cell. Mol. Neurobiol. 21, 675691.
  • Wagstaff A. J. and McTavish D. (1994) Tacrine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer's disease. Drugs Aging 4, 510540.