Get access

Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge


Corresponding author: Dr Anna-Louise Reysenbach. Tel.: +1 503 725 3864; fax: +1 503 725 8570; e-mail:


A culture-independent molecular phylogenetic survey was carried out for a bacterial and archaeal community of a mineralized crust coating a sulphide spire, which was collected from the Edmond vent field (23° S, 69° E, 3300 m depth) on the Central Indian Ridge. Small-subunit rRNA genes (16S rDNA) were amplified from environmental DNA by PCR utilizing Bacteria-specific, and Archaea-specific 16S rDNA primers. PCR products were cloned and 26 bacterial and nine archaeal unique sequence types (phylotypes) were identified from 150 clones analysed by restriction fragment length polymorphism, representing eight and four distinct lineages, respectively. The majority (>90%) of the bacterial phylotypes group with the ɛ-Proteobacteria and confirms the global prevalence of ɛ-Proteobacteria in deep-sea hydrothermal environments. Among the ɛ-Proteobacteria, >40% of the phylotypes were closely related to the recently isolated deep-sea vent thermophilic chemolithoautotrophic sulphur-reducer, Nautilia lithotrophica. A single bacterial sequence was nearly identical (99% similarity) to the thermophilic hydrogen-oxidizing Hydrogenobacter thermolithotrophum, and is the first report of Hydrogenobacter at deep-sea hydrothermal vents. A majority (97%) of the archaeal phylotypes grouped with the ‘Deep-sea Hydrothermal Vent Euryarchaeotal Group’, a phylogenetic lineage of uncultured Archaea that have only been reported from other deep-sea hydrothermal vents on the Mid-Atlantic Ridge, East Pacific Rise, Juan de Fuca Ridge, Isu–Ogasawara Arc, Okinawa Trough and the Manus Basin. A single sequence was closely related to the hyperthermophilic sulphur-reducing Thermococcales frequently found in diverse deep-sea vent environments. Scanning electron micrographs of the mineralized crust reveal abundant filamentous, rod and coccoidal forms encased in sulphur and sulphide mineral precipitate, suggesting that the thermophilic chemolithoautorophs and sulphide-producing heterotrophs may influence the architecture and sulphur cycling of the sulphide spire.