SEARCH

SEARCH BY CITATION

Abstract

This study evaluated the genetic consequences of a reintroduction of the endangered annual plant Cordylanthus maritimus ssp. maritimus to Sweetwater Marsh (San Diego County, California). A survey of 21 enzyme loci in natural populations revealed that genetic diversity is very low and is primarily found as rare alleles at a few loci, making this species especially susceptible to the loss of alleles and heterozygosity through genetic drift. The reintroduction was performed in 1991 and 1992 by sowing seeds (collected from Tijuana Estuary) in numerous small patches of suitable habitat. For this study, leaf tissue was collected from all plants in all patches during flowering in 1995 and surveyed for genotype at the three enzyme loci that are polymorphic at Tijuana Estuary. Rare alleles were absent in 27 out of 30 patches for Pgm-1, in 17 out of 30 patches for Pgm-2, and in 10 out of 11 patches for Mdh-1. In all, half of the patches lacked any rare allele. Rare alleles tended to occur in patches with few individuals. Overall rare allele frequency was lower than in the colonies from which seeds were collected at two of the three loci, and heterozygosity was reduced. The Sweetwater Marsh population is at risk of losing most of its genetic variation at enzyme loci through the extinction of patches with few individuals. Future reintroduction attempts should attempt to create contiguous sets of patches or to periodically reseed existing patches to reduce the loss of genetic variation.