Efforts to reforest tropical pasture with native tree species have increased in recent years, yet little is known about the physiology of most tropical trees. The goal of this study was to assess the effect of habitat on photosynthetic responses to light for seedlings of four native rainforest species (Calophyllum brasiliense, Ocotea glaucosericea, Ocotea whitei, and Sideroxylon portoricense) planted to facilitate tropical rainforest recovery in southern Costa Rica. Seedlings were planted in primary forest, in open abandoned pasture, and in the shade of remnant trees within the pasture. Growth, morphology, photosynthetic gas exchange responses to light, and chlorophyll fluorescence (an indication of the integrity of photosynthetic processes) were measured in the three habitats. Height and leaf area were generally greater for seedlings in tree shade compared to those in the forest and open pasture. Photosynthetic rates were higher for plants in open pasture and tree shade compared to those in the forest for two of the four species. Chlorophyll fluorescence results indicated flexibility in the photosynthetic processing of light energy that may help plants tolerate the bright light of the pasture. This study demonstrates that, for certain species, seedlings under remnant pasture trees do not exhibit the level of photosynthetic stress experienced in open abandoned pasture. Seedling responses to light, in combination with other factors such as increased nutrient input through litterfall, help explain the enhanced growth of seedlings under remnant pasture trees. Planting seedlings under remnant trees may increase the success of future efforts to restore tropical forest in abandoned agricultural land.