Soil Seed Bank as an Input of Seed Source in Revegetation of Lead / Zinc Mine Tailings


Address correspondence to M.H. Wong, email


The goal of the present study was to assess a soil seed bank as an input seed source for revegetating lead/zinc (Pb/Zn) mine tailings. The seed bank source was abandoned farmland, whose top 10-cm layer of topsoil contained 6,850 ± 377 seeds/m2 from 41 species. The seeds in the soil were principally distributed in the upper 0–2 cm, which held 75.8% of total seeds and 92.7% of species composition. The top 2-cm layer of topsoil may be sufficient to serve the purpose of providing a seed source for revegetation on derelict lands, including mined lands. Four different thicknesses of topsoil (1, 2, 4, and 8 cm, redistributed from the total 0–10-cm layer from the farmland) were field-tested on the Pb/Zn mine tailings. There was no significant difference in seedling density among the 4 thickness treatments. Many seeds in the treatments with more than 1-cm of topsoil were unable to emerge from the deeper layer. Seedlings in plots with topsoil of 1-, 2- and 4-cm failed to establish within 1 year due to the extremely high acidity (pH 2.39 to 2.76). A shallow layer of topsoil cannot neutralize the sulfuric acid generated from oxidation of pyrites in the tailings. For establishment of seedlings on metalliferous lands, an insulating layer such as subsoil, building rubble, or domestic refuse is necessary before covering with valuable topsoil. The woody legume Leucaena leucocephala grown on the tailings with a topsoil cover of 8-cm was the most dominant species. Lead was accumulated in root, branch, stem bark, and xylem, which accounted for more than 80% of the total metal concentration in the plant. This portion of Pb will reside in the plant for a long period, while the smaller portion of Pb in the leaf (about 15%) could be returned to the environment as litter during growth. Woody plants may have an advantage in metal-phyto-remediation over herbaceous plants.