• 1
    So NK. Depth electrode studies in mesial temporal epilepsy. In: LudersJ, ed. Epilepsy surgery. New York: Raven Press, 1991:37184.
  • 2
    Spencer SS & Spencer DD. Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 1994;35:7217.
  • 3
    Margerison JH & Corsellis JAN. Epilepsy and the temporal lobes: a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966;89:499530.
  • 4
    Bruton CJ. The neuropathology of temporal lobe epilepsy. Oxford: Institute of Psychiatry, Maudsley Monographs, #31; Oxford University Press, 1988.
  • 5
    Du F, Whetsell WO, Abou-Khalil B, et al. Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 1993;16:22333.
  • 6
    Hudson LP, Munoz DG, Miller L, et al. Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 1993;33:62231.
  • 7
    Siegel AM, Wieser HG, Wichmann W, et al. Relationships between MR-imaged total amount of tissue removed, resection scores of specific mediobasal limbic subcompartments and clinical outcome following selective amygdalohippocampectomy. Epilepsy Res 1990;6:5665.
  • 8
    Goldring S, Edwards I, Harding GW, et al. Results of anterior temporal lobectomy that spares the amygdala in patients with complex partial seizures. J Neurosurg 1992;77:18593.
  • 9
    Lothman EW, Bertram EH, Stringer JL. Functional anatomy of hippocampal seizures. Prog Neurobiol 1991;37:182.
  • 10
    Paré D, DeCurtis M, Llinas R. Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro. J Neurosci 1992;12:186781.
  • 11
    Rafiq A, DeLorenzo RJ, Coulter DA. Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice. J Neurophysiol 1993;70:196274.
  • 12
    Jones RSG & Heinemann U. Synaptic and intrinsic responses of medial entorhinal cortical cells in normal and magnesium-free medium in vitro. J Neurophysiol 1988;59:147696.
  • 13
    Sperling MR, Gur RC, Alavi A, et al. Subcortical metabolic alterations in partial epilepsy. Epilepsia 1990;31:14555.
  • 14
    Ryvlin P, Cinotti L, Froment JC, et al. Metabolic patterns associated with non-specific magnetic resonance imaging abnormalities in temporal lobe epilepsy. Brain 1991;114:236383.
  • 15
    Ben-Ari Y, Tremblay E, Ottersen OP. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 1980;5:51528.
  • 16
    Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987;23:95368.
  • 17
    Cavalheiro EA, Leite JP, Bortolotto ZA, et al. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991;32:77882.
  • 18
    Herkenham M. The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 1978;177:589610.
  • 19
    Aggleton JP & Mishkin M. Projections of the amygdala to the thalamus in the Cynomolgus monkey. J Comp Neurol 1984;222:5668.
  • 20
    Insausti R, Amaral DG, Cowan WM. The entorhinal cortex of the monkey, III: subcortical afferents. J Comp Neurol 1987;264:396408.
  • 21
    Russchen FT, Amaral DG, Price JL. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 1987;256:175210.
  • 22
    Su H-S & Bentivoglio M. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol 1990;297:58293.
  • 23
    Van Groen T & Wyss JM. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 1990;302:51528.
  • 24
    Wouterlood FG, Saldana E, Witter MP. Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1990;296:179203.
  • 25
    Turner BH & Herkenham M. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J Comp Neurol 1991;313:295325.
  • 26
    Kuroda M, Murakami K, Kishi K, et al. Distribution of the piriform cortical terminals to cells in the central segment of the mediodorsal thalamic nucleus of the rat. Brain Res 1992;595:15963.
  • 27
    Dolleman-van der Weel MJ & Witter MP. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 1996;364:63750.DOI: 10.1002/(sici)1096-9861(19960122)364:4<637::aid-cne3>;2-4
  • 28
    Dolleman-van der Weel MJ, Lopes da Silva FH, Witter MP. Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci 1997;17:564050.
  • 29
    Bertram EH & Zhang DX. Thalamic excitation of hippocampal CA1 neurons: a comparison with the effects of CA3 stimulation. Neuroscience 1999;92:1526.DOI: 10.1016/S0306-4522(99)00357-7
  • 30
    Juhász C, Nagy F, Watson C, et al. Glucose and [C-11]flumazenil positron emission tomography abnormalities thalamic nuclei in temporal lobe epilepsy. Neurology 1999;53:203745.
  • 31
    Patel S, Millan MH, Meldrum BS. Decrease in excitatory transmission within the lateral habenula and the mediodorsal thalamus protects against limbic seizures in rats. Exp Neurol 1988;101:6374.
  • 32
    Miller JW, Hall CM, Holland KD, et al. Identification of a median thalamic system regulating seizures and arousal. Epilepsia 1989;30:493500.
  • 33
    Miller JW & Ferrendelli JA. Characterization of GABAergic seizure regulation in the midline thalamus. Neuropharmacology 1990;29:64955.
  • 34
    Hirayasu Y & Wada JA. N-methyl-d-aspartate injection into the massa intermedia facilitates development of limbic kindling in rats. Epilepsia 1992;33:96570.
  • 35
    Cassidy RM & Gale K. Mediodorsal thalamus plays a critical role in the development of limbic motor seizures. J Neurosci 1998;18:90029.
  • 36
    Paxinos G & Watson G. The rat brain in stereotaxic coordinates. 2nd ed. San Diego, CA: Academic Press, 1986.
  • 37
    Bertram EH, Lothman EW, Lenn NJ. The hippocampus in experimental chronic epilepsy: a morphometric analysis. Ann Neurol 1990;27:438.
  • 38
    Bertram EH & Lothman EW. Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus. Brain Res 1993;603:2531.
  • 39
    Mathern GW, Bertram EH, Babb TL, et al. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentate excitatory and inhibitory axon sprouting, and increased staining for N-methyl-d-aspartate, AMPA and GABAA receptors. Neuroscience 1997;77:100319.DOI: 10.1016/S0306-4522(96)00516-7
  • 40
    Bertram EH. Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 1997;38:95105.
  • 41
    Lothman EW & Williamson JK. Rapid kindling with recurrent hippocampal seizures: effect of stimulus frequency and train duration. Epilepsy Res 1993;14:20920.
  • 42
    Lothman EW, Bertram EH, Bekenstein JW, Perlin JB. Self-sustaining limbic status epilepticus induced by “continuous” hippocampal stimulation: electrographic and behavioral characteristics. Epilepsy Res 1989;3:10719.
  • 43
    Lothman E, Bertram E, Stringer J, et al. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res 1990;6:1108.
  • 44
    Bertram EH & Cornett JF. The evolution of a rat model of chronic spontaneous limbic seizures. Brain Res 1994;661:15762.
  • 45
    Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 1982;54:53040.
  • 46
    Bertram EH, Williamson JM, Cornett JF, et al. Design and construction of a long-term continuous video-EEG monitoring unit for simultaneous recording of multiple small animals. Brain Res Brain Res Protoc 1997;2:8597.
  • 47
    Deschênes M, Paradis M, Roy JP, et al. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 1984;51:1196219.
  • 48
    Jahnsen H & Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 1984;349:20526.
  • 49
    McCormick DA & Feeser HR. Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 1990;39:10313.
  • 50
    Coulter DA, Huguenard JR, Prince DA. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol (Lond) 1989;414:587604.
  • 51
    Crunelli V, Lightowler S, Pollard CE. A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol (Lond) 1989;413:54361.
  • 52
    Hernández-Cruz A & Pape H-C. Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol 1989;61:127083.
  • 53
    Kapur J, Stringer JL, Lothman EW. Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. J Neurophysiol 1989;61:41726.
  • 54
    Stringer JL & Lothman EW. Repetitive seizures cause an increase in paired-pulse inhibition in the dentate gyrus. Neurosci Lett 1989;105:915.
  • 55
    Watanabe Y, Johnson RS, Butler LS, et al. Null mutation of c-fos impairs structural and functional plasticities in the kindling model of epilepsy. J Neurosci 1996;16:38276.
  • 56
    Adams B, Sazgar M, Osehobo P, et al. Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting, and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsy. J Neurosci 1997;17:28896.
  • 57
    Adams B, Von Ling E, Vaccarella L, et al. Time course for kindling-induced changes in the hilar area of the dentate gyrus: reactive gliosis as a potential mechanism. Brain Res 1998;804:3316.
  • 58
    Avoli M & Gloor P. Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy. Exp Neurol 1982;76:196217.
  • 59
    Empson RM & Heinemann U. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol (Lond) 1995;484:70720.
  • 60
    Bertram EH, Zhang DX, Mangan P, et al. Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. Epilepsy Res 1998;32:194205.
  • 61
    Collins RC, Tearse RG, Lothman EW. Functional anatomy of limbic seizures: focal discharges from medial entorhinal cortex in rat. Brain Res 1983;280:2540.
  • 62
    Handforth A & Treiman DM. Functional mapping of the early stages of status epilepticus: a 14C-2-deoxyglucose study in the lithium pilocarpine rat. Neuroscience 1995;64:10573.DOI: 10.1016/0306-4522(94)00376-G
  • 63
    Van Landingham KE & Lothman EW. Self-sustaining limbic status epilepticus, I: acute and chronic cerebral metabolic studies: limbic hypermetabolism and neocortical hypometabolism. Neurology 1991;41:19429.
  • 64
    Henry TR, Mazziotta JC, Engel Jr J, et al. Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cereb Blood Flow Metab 1990;10:74857.
  • 65
    Proctor F, Prince D, Morrell F. Primary and secondary spike foci following depth lesions. Arch Neurol 1966;15:15162.
  • 66
    Mangan PS & Bertram EH. Ontogeny of altered synaptically mediated responses of CA1 pyramidal cells in a model of limbic epilepsy. Brain Res 1998;799:18396.
  • 67
    Stringer JL & Lothman EW. Hippocampal slices from kindled rats show an increased sensitivity for induction of epileptiform activity by changes in extracellular ion concentrations. Neurosci Lett 1988;89:438.
  • 68
    Mody I. The molecular basis of kindling. Brain Pathol 1993;3:395403.
  • 69
    Otis TS, De Koninck Y, Mody I. Lasting potentiation of inhibition is associated with an increased number gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci U S A 1994;91:7698702.
  • 70
    Kohr G & Mody I. Kindling increases N-methyl-d-aspartate potency at single N-methyl-d-aspartate channels in dentate gyrus granule cells. Neuroscience 1994;62:97581.
  • 71
    Bear J, Fountain NB, Lothman EW. Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats. J Neurophysiol 1996;76:292840.
  • 72
    Mangan PS, Scott C, Williamson JM, et al. Aberrant neuronal physiology in the basal nucleus of the amygdala in a model of chronic limbic epilepsy. Neuroscience 2000;101:37791.
  • 73
    Lothman EW, Rempe DA, Mangan PS. Changes in excitatory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. J Neurophysiol 1995;74:8418.