• 1
    Fox PT, Raichle ME, Mintun MA, et al. Non-oxidative glucose consumption during focal physiologic neural activity. Science 1988;241:4624.
  • 2
    Baron JC, Rougemont D, Soussaline F, et al. Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: a positron tomographic study. J Cereb Blood Flow Metab 1984;4:1409.
  • 3
    Gaillard WD, Fazilat S, White S, et al. Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Neurology 1995;45:18417.
  • 4
    Leiderman DB, Balish M, Sato S, et al. Comparison of PET measurements of blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res 1992;13:1537.
  • 5
    Breier JI, Mullani NA, Thomas AB, et al. Effects of duration of epilepsy on the uncoupling of metabolism and blood flow in complex partial seizures. Neurology 1997;48:104753.
  • 6
    Fink GR, Pawlik G, Stefan H, et al. Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. J Neurol Sci 1996;137:2834.
  • 7
    Spencer SS, Theodore WH, Berkovic SF. Clinical application: MRI, SPECT, and PET. Magn Reson Imaging 1995;13:1119246.
  • 8
    Devous MD Sr, Thisted RA, Morgan GF, et al. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med 1998;39:28593.
  • 9
    Lee DS, Lee SK, Chung J-K, et al. Predictive value of F-18-FDG PET and ictal SPECT to find epileptogenic zones in cryptogenic neocortical epilepsies [Abstract]. J Nucl Med 1997;38:272P.
  • 10
    Knowlton RC, Laxer KD, Ende G, et al. Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol 1997;42:82937.
  • 11
    Friston KJ, Worsley KJ, Frackowiak RSJ, et al. Assessing the significance of focal activations using their spatial extent. Hum Brain Mapping 1994;1:21020.
  • 12
    Friston KJ, Holmes AP, Worsley KJ, et al. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapping 1995;2:189210.
  • 13
    Friston KJ, Ashburner J, Frith CD, et al. Spatial registration and normalization of images. Hum Brain Mapping 1995;2:16589.
  • 14
    Signorini M, Paulesu E, Friston K, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: A clinical validation of statistical parametric mapping. Neuroimage 1999;9:6380.DOI: 10.1006/nimg.1998.0381
  • 15
    Van Bogaert P, Massager N, Tugendhaft P, et al. Statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy. Neuroimage 2000;12:12938.DOI: 10.1006/nimg.2000.0606
  • 16
    Penhune VB, Zatorre RJ, MacDonald JD, et al. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 1996;6:66172.
  • 17
    Kang KW, Lee DS, Cho JH, et al. Quantification of F-18-FDG PET images in temporal lobe epilepsy patients using probabilistic brain atlas. Neuroimage 2001;14:16.
  • 18
    Theodore WH, Gaillard WD, Sato S, et al. Positron emission tomographic measurement of cerebral blood flow and temporal lobectomy. Ann Neurol 1994;36:2414.
  • 19
    Zubal IG, Avery RA, Stokking R, et al. Ratio-images calculated from interictal positron emission tomography and single-photon emission computed tomography for quantification of the uncoupling of brain metabolism and perfusion in epilepsy. Epilepsia. 2000;41:15606.
  • 20
    Nagata T, Tanaka F, Yonekura Y, et al. Limited value of interictal brain perfusion SPECT for detection of epileptic foci: high resolution SPECT studies in comparison with FDG-PET. Ann Nucl Med 1995;9:5963.
  • 21
    Bittar RG, Andermann F, Olivier A, et al. Interictal spikes increase cerebral glucose metabolism and blood flow: a PET study. Epilepsia 1999;40:1708.
  • 22
    Theodore WH, Balish M, Leiderman D, et al. Effect of seizures on cerebral blood flow measured with 15O-H2O and positron emission tomography. Epilepsia 1996;37:796802.
  • 23
    Lee DS, Lee SK, Kim S-K, et al. 6 Hr-postictal residual perfusion abnormalities in epileptogenic zones identified on ictal/postictal Tc-99m HMPAO SPECT. Neurology 2000;55:83541.
  • 24
    Leiderman DB, Albert P, Balish M, et al. The dynamics of metabolic change following seizures as measured by positron emission tomography with fluorodeoxyglucose F-18. Arch Neurol 1994;51:9326.
  • 25
    Cornford EM, Gee MN, Swartz BE, et al. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx. Ann Neurol 1998;43:8018.
  • 26
    Reutens DC, Gjedde AH, Meyer E. Regional lumped constant differences and asymmetry in fluorine-18-FDG uptake in temporal lobe epilepsy. J Nucl Med 1998;39:17680.