• 1
    Allen PJ, Fish DR & Smith SJM. Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. Electroencephalogr Clin Neurophysiol 1992;82:1559.
  • 2
    Fisher RS, Webber WRS & Lesser RP, et al. High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 1992;9:4418.
  • 3
    Alarcon G, Binnie CD & Elwes RDC, et al. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol 1995;94:32637.DOI: 10.1016/0013-4694(94)00286-t
  • 4
    Bragin A, Engel J Jr & Wilson CL, et al. High-frequency oscillations in the human brain. Hippocampus 1999;9:13742.DOI: 10.1002/(sici)1098-1063(1999)9:2<137::aid-hipo5>;2-0
  • 5
    Bragin A, Engel J Jr & Wilson CL, et al. Hippocampal and entorhinal cortex high-frequency oscillations (100-500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 1999;40:12737.
  • 6
    Pacia SV & Ebersole JS. Intracranial EEG in temporal lobe epilepsy. J Clin Neurophysiol 1999;16:399407.
  • 7
    Nealis JGT & Duffy FH. Paroxysmal beta activity in the pediatric electroencephalogram. Ann Neurol 1978;4:1126.
  • 8
    Gobbi G, Bruno L & Pini A, et al. Periodic spasms: an unclassified type of epileptic seizure in childhood. Dev Med Child Neurol 1987;29:76675.
  • 9
    Penttonen M, Nurminen N, Miettinen R, et al.Ultra-slow oscillation (0.025 Hz) triggers hippocampal afterdischarges in Wistar rats. Neuroscience 1999;94:735–43.
  • 10
    Perez Velazquez JL & Carlen PL. Gap junctions, synchrony and seizures. Trends Neurosci 2000;23:6874.DOI: 10.1016/s0166-2236(99)01497-6
  • 11
    Traub RD, Jefferys JGR & Miles R, et al. A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 1994;481:7995.
  • 12
    Traub RD & Miles R. Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J Comput Neurosci 1995;2:2918.
  • 13
    Traub RD, Schmitz D & Jefferys JGR, et al. High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 1999;92:40726.DOI: 10.1016/s0306-4522(98)00755-6
  • 14
    Traub RD, Whittington MA & Buhl EH, et al. On the mechanism of the γ[RIGHTWARDS ARROW]β frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J Neurosci 1999;19:1088105.
  • 15
    Traub RD, Bibbig A & Fisahn A, et al. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 2000;12:4093106.DOI: 10.1046/j.1460-9568.2000.00300.x
  • 16
    Draguhn A, Traub RD, Schmitz D, et al.Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 1998;394:189–92.
  • 17
    Spencer WA & Kandel ER. Electophysiology of hippocampal neurons. IV. Fast prepotentials. J Neurophysiol 1961;24:27285.
  • 18
    Schwartzkroin PA & Prince DA. Penicillin-induced epileptiform activity in the hippocampal in vitro preparation. Ann Neurol 1977;1:4639.
  • 19
    Schwartzkroin PA & Prince DA. Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 1978;147:11730.
  • 20
    MacVicar BA & Dudek FE. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 1981;213:7825.
  • 21
    MacVicar BA & Dudek FE. Electrotonic coupling between granule cells of the rat dentate gyrus: physiological and anatomical evidence. J Neurophysiol 1982;47:57992.
  • 22
    Perez-Velazquez JL, Valiante TA & Carlen PL. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci 1994;14:430817.
  • 23
    Elekes K & Szabo T. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Exp Brain Res 1985;60:50920.
  • 24
    Vaney DI. The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proc R Soc Lond B Biol Sci 1993;252:93101.
  • 25
    Yasargil GM & Sandri C. Topography and ultrastructure of commissural interneurons that may establish reciprocal inhibitory connections of the Mauthner axons in the spinal cord of the tench, Tinca tinca L. J Neurocytol 1990;19:11126.
  • 26
    Schmitz D, Schuchmann S, Fisahn A, et al. Axo-axonal coupling: a new mechanism for ultrafast neuronal communication. Submitted.
  • 27
    Knowles WD & Schwartzkroin PA. Axonal ramifications of hippocampal CA1 pyramidal cells. J Neurosci 1981;1:123641.
  • 28
    Wong RKS & Traub RD. Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J Neurophysiol 1983;49:44258.
  • 29
    Buzsáki G, Horváth Z & Urioste R, et al. High-frequency network oscillation in the hippocampus. Science 1992;256:10257.
  • 30
    Ylinen A, Bragin A & Nádasdy Z, et al. Sharp wave-associated high frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 1995;15:3046.
  • 31
    Traub RD & Wong RKS. Cellular mechanism of neuronal synchronization in epilepsy. Science 1982;216:7457.
  • 32
    Traub RD, Borck C & Colling SB, et al. On the structure of ictal events in vitro. Epilepsia 1996;37:87991.
  • 33
    Johnston D & Brown TH. Giant synaptic potential hypothesis for epileptiform activity. Science 1981;211:2947.
  • 34
    Snow RW & Dudek FE. Electrical fields directly contribute to action potential synchronization during convulsant-induced epileptiform bursts. Brain Res 1984;323:1148.
  • 35
    Traub RD, Dudek FE & Snow RW, et al. Computer simulations indicate that electrical field effects contribute to the shape of the epileptiform field potential. Neuroscience 1985;15:94758.
  • 36
    Haas HL & Jefferys JGR. Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 1984;354:185201.
  • 37
    Jefferys JGR & Haas HL. Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 1982;300:44850.
  • 38
    Taylor CP & Dudek FE. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 1982;218:8102.
  • 39
    Taylor CP & Dudek FE. Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 1984;52:12642.
  • 40
    Taylor CP & Dudek FE. Synchronization without active chemical synapses during hippocampal afterdischarges. J Neurophysiol 1984;52:14355.
  • 41
    Konnerth A, Heinemann U & Yaari Y. Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature 1984;307:6971.
  • 42
    Konnerth A, Heinemann U & Yaari Y. Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J Neurophysiol 1986;56:40923.
  • 43
    Traub RD & Bibbig A. A model of high-frequency ripples in the hippocampus, based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J Neurosci 2000;20:208693.
  • 44
    Erdös P & Rényi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci 1960;5:1761.
  • 45
    Traub RD & Miles R. Neuronal networks of the hippocampus. New York: Cambridge University Press, 1991.
  • 46
    Staley KJ, Longacher M & Bains JS, et al. Presynaptic modulation of CA3 network activity. Nat Neurosci 1998;1:2019.
  • 47
    Traub RD, Jefferys JGR & Whitttington MA. Fast oscillations in cortical circuits. Cambridge, MA: MIT Press, 1999.
  • 48
    Whittington MA, Stanford IM & Colling SB, et al. Spatiotemporal patterns of γ frequency oscillations tetanically induced in the rat hippocampal slice. J Physiol 1997;502:591607.
  • 49
    Whittington MA, Faulkner HJ & Doheny HC, et al. Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 2000;86:17190.DOI: 10.1016/s0163-7258(00)00038-3
  • 50
    Singer W & Gray C. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995;18:55586.
  • 51
    Lee J, Taira T & Pihlaja P, et al. Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. Brain Res 1996;706:2106.DOI: 10.1016/0006-8993(95)01214-1
  • 52
    Spray DC, Harris AL & Bennett MVL. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 1981;211:7125.
  • 53
    Avoli M, Methot M & Kawasaki H. GABA-dependent generation of ectopic action potentials in the rat hippocampus. Eur J Neurosci 1998;10:271422.DOI: 10.1046/j.1460-9568.1998.00275.x
  • 54
    Perreault P & Avoli M. 4-Aminopyridine-induced epileptiform activity and a GABA-mediated long-lasting depolarization in the rat hippocampus. J Neurosci 1992;12:10415.
  • 55
    Buhl EH, Tamás G & Fisahn A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 1998;513:11726.
  • 56
    Fisahn A, Pike FG & Buhl EH, et al. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 1998;394:1869.DOI: 10.1038/28179
  • 57
    Whittington MA, Traub RD & Jefferys JGR. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 1995;373:6125.
  • 58
    Stasheff SF, Hines M & Wilson WA. Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes. J Neurophysiol 1993;70:96075.
  • 59
    Stasheff SF, Mott DD & Wilson WA. Axon terminal hyperexcitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. J Neurophysiol 1993;70:97684.
  • 60
    LeBeau FEN, Towers SK & Traub RD, et al. Fast and ultrafast oscillations in the hippocampus in vitro. Abstr Soc Neurosci 2000;26:183.
  • 61
    Towers SK, LeBeau FEN & Traub RD, et al. Fast network oscillations in the rat dentate gyrus in vitro. Abstr Soc Neurosci 2000;26:183.
  • 62
    Cepeda C, Walsh JP & Peacock W, et al. Dye-coupling in human neocortical tissue resected from children with intractable epilepsy. Cereb Cortex 1993;3:95107.
  • 63
    Davidson JS & Baumgarten IM. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication: structure-activity relationships. J Pharamacol Exp Ther 1988;246:11047.
  • 64
    Turpie AG & Thomson TJ. Carbenoxolone sodium in the treatment of gastric ulcer with special reference to side-effects. Gut 1965;6:5914.
  • 65
    Nagy GS. Evaluation of carbenoxolone sodium in the treatment of duodenal ulcer. Gastroenterology 1978;74:710.
  • 66
    Jellinck PH, Monder C & McEwen BS, et al. Differential inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone in rat brain regions and peripheral tissues. J Steroid Biochem Mol Biol 1993;46:20913.
  • 67
    Dobbins KR & Saul RF. Transient visual loss after licorice ingestion. J Neuroophthalmol 2000;20:3841.