• 1
    Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. BMJ 1997;314: 1801.
  • 2
    Daneshvar H, Racette L, Coupland SG, et al. Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology 1999;106: 17928.
  • 3
    Harding GFA, Robertson KA, Edson SB, et al. Visual electrophysiological effect of a GABA transaminase blocker. Doc Ophthalmol 1999;97: 17988.
  • 4
    Wild JM, Martinez C, Reinshagen G, et al. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999;40: 178494.
  • 5
    Harding GFA, Wild JM, Robertson KA, et al. Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 2000;41: 142031.
  • 6
    Hardus P, Verduin WM, Engelsman M, et al. Visual field loss associated with vigabatrin: quantification and relation to dosage. Epilepsia 2001;42: 2627.
  • 7
    Kalviainen R, Nousiainen I, Mantyjarvi M, et al. Vigabatrin, a GABAergic antiepileptic drug, causes concentric visual field defects. Neurology 1999;53: 9226.
  • 8
    Hardus P, Verduin WM, Postma G, et al. Long term changes in the visual fields of patients with temporal lobe epilepsy using vigabatrin. Br J Ophthalmol 2000;84: 78890.
  • 9
    Lawden MC, Eke T, Degg C, et al. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry 1999;67: 71622.
  • 10
    Manuchehri K, Goodman S, Siviter L, et al. A controlled study of vigabatrin and visual abnormalities. Br J Ophthalmol 2000;84: 499505.
  • 11
    Johnson MA, Krauss GL, Miller NR, et al. Visual function loss from vigabatrin: effect of stopping the drug. Neurology 2000;55: 405.
  • 12
    Ponjavic V, Grase L, Andreasson S, et al. Multifocal-ERG and full-field ERG in patients on vigabatrin medication. Invest Ophthalmol Vis Sci 2000;41: 1271B646.
  • 13
    Krauss GL, Johnson MA, Miller NR. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology 1998;50: 6148.
  • 14
    Miller NR, Johnson MA, Paul SR, et al. Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology 1999;53: 20827.
  • 15
    Harding GFA, Wild JM, Robertson KA, et al. Separating the retinal electrophysiologic effects of vigabatrin: treatment versus field loss. Neurology 2000;55: 34752.
  • 16
    Crofts K, Brennan R, O'Connor G, et al. Vigabatrin-induced optic neuropathy. J Neurol 1997;244: 6667.
  • 17
    Nousiainen I, Kalviainen R, Mantyjarvi M. Contrast and glare sensitivity in epilepsy patients treated with vigabatrin or carbamazepine monotherapy compared with healthy volunteers. Br J Ophthalmol 2000;84: 6225.
  • 18
    Nousiainen I, Kalviainen R, Mantyjarvi M. Color vision in epilepsy patients treated with vigabatrin or carbamazepine monotherapy. Ophthalmology 2000;107: 8848.
  • 19
    Heijl A, Lindgren G, Olsson J. Normal variability of static perimetric threshold values across the central visual field. Arch Ophthalmol 1987;105: 15449.
  • 20
    Kinnear PR. Proposals for scoring and assessing the 100-hue test. Vis Res 1970;10: 42333.
  • 21
    Vingrys AJ, King-Smith PE. A quantitative scoring technique for panel tests of color vision. Invest Ophthalmol Vis Sci 1988;29: 5063.
  • 22
    Pomerance GN, Evans DW. Test-retest reliability of the Csv-1000 Contrast Test and its relationship to glaucoma therapy. Invest Ophthalmol Vis Sci 1994;35: 335761.
  • 23
    Arend O, Remky A, Evans D, et al. Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes. Invest Ophthalmol Vis Sci 1997;38: 181924.
  • 24
    Russell-Eggitt IM, Mackey DA, Taylor DSI, et al. Vigabatrin-associated visual field defects in children. Eye 2000;14: 3349.
  • 25
    Koch D, Lui J. Survey of the clinical use of glare and contrast testing. J Refract Surg 1990;16: 70711.
  • 26
    Ghaith AA, Daniel J, Stulting RD, et al. Contrast sensitivity and glare disability after radial keratotomy and photorefractive keratectomy. Arch Ophthalmol 1998;116: 128.
  • 27
    Verrotti A, Lobefalo L, Petitti MT, et al. Relationship between contrast sensitivity and metabolic control in diabetics with and without retinopathy. Ann Med 1998;30: 36974.
  • 28
    Bayer A, Thiel HJ, Zrenner E, et al. Colour vision deficiencies and enhanced sensitivity to glare in epileptic patients treated with carbamazepine and phenytoin: ocular side-effects of anti-epileptic drugs. Nervenarzt 1995;66: 8996.
  • 29
    Wong ICK, Mawer GE, Sander J. Severe persistent visual field constriction associated with vigabatrin: reaction might be dose dependent. BMJ 1997;314: 16934.
  • 30
    Hardus P, Verduin WM, Postma G, et al. Concentric contraction of the visual field in patients with temporal lobe epilepsy and its association with the use of vigabatrin medication. Epilepsia 2000;41: 5817.
  • 31
    Wild JM, Cubbidge RP, Pacey IE, et al. Statistical aspects of the normal visual field in short wavelength automated perimetry. Invest Ophthalmol Vis Sci 1998;39: 5463.
  • 32
    Johnson CA, Adams AJ, Casson EJ, et al. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993;111: 64550.
  • 33
    Hudson C, Flanagan JG, Turner GS, et al. Short-wavelength sensitive visual field loss in patients with clinically significant diabetic macular oedema. Diabetalogia 1998;41: 91828.
  • 34
    Sperling HG, Johnson C, Harwerth RS. Differential spectral photic damage to primate cones. Vis Res 1980;20: 111725.
  • 35
    Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve axons. Ophthalmology 1988;95: 35763.
  • 36
    Nork MT, Mangini NJ, Millecchia LL. Rods and cones contain antigenically distinctive S-antigens. Invest Ophthalmol Vis Sci 1993;34: 291825.
  • 37
    Johnson CA. Selective verses nonselective losses in glaucoma. J Glaucoma 1994;3(suppl):S518.
  • 38
    Cubells JF, Blanchard JS, Smith DM, et al. In vivo action of enzyme-activated irreversible inhibitors of glutamic acid decarboxylase and gamma-aminobutyric acid transaminase in retina vs brain. J Pharmacol Exp Ther 1986;238: 50814.
  • 39
    Haesendonck EC, Missotten L. A subgroup of bipolar cells in human retina is GABA-immunoreactive. Neurosci Lett 1993;161: 18790.
  • 40
    Crooks J, Kolb H. Localisation of GABA, glycine and tyrosine-hydroxylase in the human retina. J Comp Neurol 1992;315: 287302.
  • 41
    Djamgoz MBA. Diversity of GABA receptors in the vertebrate outer retina. Trends Neurosci 1995;18: 11820.
  • 42
    Man-Kit Lam D. Neurotransmitters in the vertebrate retina. Invest Ophthalmol Vis Sci 1997;38: 5536.
  • 43
    Huang B, Redburn DA. GABA-induced calcium responses in the outer retina of neonatal rabbits. Invest Ophthalmol Vis Sci 1995;36: S214.
  • 44
    Mueller AJ, Plummer DJ, Dua R, et al. Analysis of visual dysfunction in HIV-positive patients without retinitis. Am J Ophthalmol 1997;124: 15867.