SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Fink GR, Pawlik G, Stefan H, et al. Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. J Neurol Sci 1996;137: 2834.
  • 2
    Cornford EM, Hyman S, Cornford ME, et al. Interictal seizure resections show two configurations of endothelial Glut 1 glucose transporter in the human blood-brain barrier. J Cereb Blood Flow Metabol 1998;18: 2642.
  • 3
    Reutens DC, Gjedde AH, Meyer E. Regional lumped constant differences and asymmetry in fluorine-18-FDG uptake in temporal lobe epilepsy. J Nucl Med 1998;39: 17680.
  • 4
    Pardridge WM. Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 1983;63: 1481535.
  • 5
    Cornford EM, Nguyen E, Landaw EM. Acute upregulation of blood-brain barrier glucose transporter activity in seizures. Am J Physiol 2000;279: H134654.
  • 6
    Klepper J, Vera JC, De Vivo DC. Defective transport of dehydroascorbic acid in glucose transporter protein syndrome. Ann Neurol 1998;44: 2867.
  • 7
    Klepper J, Wang D, Fischbarg J, et al. Defective glucose transport across brain tissue barriers: a newly recognized neurological syndrome. Neurochem Res 1999;24: 58794.
  • 8
    Wang D, Kranz-Eble P, De Vivo DC. Mutational analysis of GLUT1 (SLC2A1) in glut-1 deficiency syndrome. Hum Mutat 2000;16: 22431.
  • 9
    Seidner G, Alvarez MG, Yeh JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998;18: 18891.
  • 10
    During M, Fried I, Leone P, et al. Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 1994;62: 235661.
  • 11
    Fried I, Wilson CL, Maidment NT, et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. J Neurosurg 1999;91: 6977055.
  • 12
    Hutchinson PJ, O'Connell MT, Maskell LB, et al. Monitoring by subcutaneous microdialysis in neurosurgical intensive care. Acta Neurochir Suppl 1999;75: 579.
  • 13
    Hutchinson PJ, O'Connell MT, Al-Rawi PG, et al. Clinical cerebral dialysis: a methodological study. J Neurosurg 2000;93: 3743.
  • 14
    Bachli H, Langemann H, Mendelowitsch A, et al. Microdialytic monitoring during cerebrovascular surgery. Neurol Res 1996;18: 3706.
  • 15
    Mendelowitsch A, Langemann H, Alessandri B, et al. Microdialytic monitoring of the cortex during neurovascular surgery. Acta Neurochir 1996;67: 4852.
  • 16
    Menzel M, Doppenberg E, Zauner A, et al. Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg 1999;91: 110.
  • 17
    Goodman JC, Valadka AB, Gopinath SP, et al. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 1999;27: 196573.
  • 18
    Persson L, Valtysson J, Enblad P, et al. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 1996;84: 60616.
  • 19
    Landolt H, Langemann H, Mendelowitsch A, et al. Neurochemical monitoring and on-line pH measurements using brain microdialysis in patients in intensive care. Acta Neurochir 1994;60: 4758.
  • 20
    Lowry OH, Passonneau JV. A flexible system of enzyme analysis. New York: Academic Press, 1972.
  • 21
    Morgan M, Singhal D, Anderson B. Quantitative assessment of blood-brain barrier damage during microdialysis. J Pharmacol Exp Ther 1996;277: 116776.
  • 22
    Zauner A, Doppenberg E, Woodword J, et al. Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 1997;41: 108293.
  • 23
    Boutelle MG, Fillenz M. Clinical microdialysis: the role of on-line measurement and quantitative microdialysis. Neurochirurgia Suppl (Wien) 1996;67: 1320.
  • 24
    Cornford EM, Gee MN, Swartz BE, et al. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx. Ann Neurol 1998;43: 8018.
  • 25
    Dykstra KH, Hsiao JK, Morrison PF, et al. Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem 1992;58: 93140.
  • 26
    Benveniste H, Drejer J, Schousboe A, et al. Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat. J Neurochem 1987;49: 72934.
  • 27
    Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious anesthetized albino rat. J Neurochem 1977;28: 897916.
  • 28
    Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of the method. Ann Neurol 1979;6: 37188.
  • 29
    Reivich M, Kuhl D, Wolf A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44: 12737.
  • 30
    Kuwabara H, Evans AC, Gjedde A. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 1990;10: 1809.
  • 31
    Evans AC, Diksic M, Yamamoto YL, et al. Effect of vascular activity in the determination of rate constants for the uptake of [18F]-labeled 2-fluoro-2-deoxy-D-glucose: error analysis and normal values in older subjects. J Cereb Blood Flow Metab 1986;6: 72438.
  • 32
    Heiss WD, Pawlick G, Herholz K, et al. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of 2[18F]fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 1984;4: 21223.
  • 33
    Huang SC, Phelps ME, Hoffman EJ, et al. Noninvasive determination of local cerebral glucose metabolic rate of glucose in man. Am J Physiol 1980;238: E6982.
  • 34
    Gjedde A, Diemer NH. Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 1983;3: 30310.
  • 35
    Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 1997;18: 71638.
  • 36
    Maquet P. Positron emission tomography studies of sleep and sleep disorders. J Neurol 1997;244(4 suppl 1):S238.
  • 37
    Crane PD, Braun LD, Cornford EM, et al. Cerebral cortical glucose utilization in the conscious rat: evidence for circadian circadian rhythm. J Neurochem 1980;34: 17006.
  • 38
    Reinstrap P, Stahl N, Mellergard P, et al. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 2000;47: 7019.
  • 39
    Langemann H, Alessandri B, Mendelowitsch A, et al. Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain. Neurol Res 2001;23: 5316.
  • 40
    Betz AL, Gilboe DD, Drewes LR. Effects of anoxia on dog brain. Brain Res 1974;67: 30716.
  • 41
    Theodore WH, Gaillard WD, Di Carli C, et al. Hippocampal volume and glucose metabolism in temporal lobe epileptic foci. Epilepsia 2001;42: 1302.
  • 42
    Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: Effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 2002;22: 2719.