• 1
    Siesjo BK. Brain energy metabolism. New York: John Wiley and Sons, 1978.
  • 2
    Sokoloff L. Relationship between functional activity and energy metabolism in the nervous system: whether, where and why? In: LassenNA, IngvarDH, RaichleME, et al., eds. Brain work and mental activity. Copenhagen: Munksgaard, 1991:524.
  • 3
    Maycox PR, Hell JW, Jahn R. Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci 1990;13:837.
  • 4
    Nicholls DG, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci 1990;11:4628.
  • 5
    Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glucolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994;91:106259.
  • 6
    Magistretti PJ, Pellerin L, Rothman DL, et al. Energy on demand. Science 1999;283:4967.DOI: 10.1126/science.283.5401.496
  • 7
    Sibson NR, Dhankhar A, Mason GF, et al. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci U S A 1997;94:2699704.
  • 8
    Sibson NR, Dhankhar A, Mason GF, et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 1998;95:31621.
  • 9
    Sibson NR, Shen J, Mason GF, et al. Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronal activity. Dev Neurosci 1998;20:32130.
  • 10
    Sibson NR, Mason GF, Shen J, et al. In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion. J Neurochem 2001;76:97589.DOI: 10.1046/j.1471-4159.2001.00074.x
  • 11
    Shen J, Sibson NR, Cline G, et al. 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev Neurosci 1998;20:43443.
  • 12
    Shulman RG, Rothman DL, Hyder F. Stimulated changes in localized cerebral energy consumption under anesthesia. Proc Natl Acad Sci U S A 1999;96:324550.
  • 13
    Shen J, Petersen KF, Behar KL, et al. Determination of the rate of the glutamate-glutamine cycle in human brain by in vivo 13C NMR. Proc Soc Natl Acad Sci U S A 1999;96:823540.
  • 14
    Rothman DL, Sibson NR, Hyder F, et al. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Trans R Soc London (Biol Sci) 1999;354:116577.
  • 15
    Hyder F, Chase JR, Behar KL, et al. Increased tri-carboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H-[13C] NMR. Proc Natl Acad Sci U S A 1996;93:76127.
  • 16
    Hyder F, Rothman DL, Mason GF, et al. Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] NMR Study. J Cereb Blood Flow Metab 1997;17:10407.
  • 17
    Hyder F, Renken R, Rothman DL. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): (3,4-13CH2)glutamate/glutamine tomography in rat brain. Magn Reson Med 1999;42:9971003
  • 18
    Hyder F, Kennan RP, Kida I, et al. Dependence of oxygen delivery on blood flow in rat brain: a 7 Tesla nuclear magnetic resonance study. J Cereb Blood Flow Metab 2000;20:48598.
  • 19
    Gaillard WD, Fazilat S, White S, et al. Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Neurology 1995;45:18417.
  • 20
    Breier JI, Mullani NA, Thomas AB, et al. Effects of duration of epilepsy on the uncoupling of metabolism and blood flow in complex partial seizures. Neurology 1997;48:104753.
  • 21
    Cornford EM, Gee MN, Swartz BE, et al. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx. Ann Neurol 1998;43:8018.
  • 22
    During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 1993;341:160713.
  • 23
    During MJ. Dynamic neurochemical alterations in human temporal lobe epilepsy. Clin Neurosci 1994;2:5363.
  • 24
    Chu WJ, Hetherington HP, Kuzniecky RI, et al. Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T. Neurology 1998;51:4729.
  • 25
    Cendes F, Caramanos Z, Andermann F, et al. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 1997;42:73746.
  • 26
    Cendes F, Stanley JA, Dubeau F, et al. Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures. Ann Neurol 1997;41:7481.
  • 27
    Hugg JW, Kuzniecky RI, Gilliam FG, et al. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol 1996;40:2369.
  • 28
    Ge S, Niesen C. BHB potentiates GABA-A mediated inhibitory postsynaptic potentials in immature hippocampal CA1 neurons. Epilepsia 1998;39(suppl 6):E.06.
  • 29
    Thio LL, Wong M, Yamada KA. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology 2000;54:32531.
  • 30
    Izumi Y, Ishii K, Katsuki H, et al. BHB fuels synaptic function during development: histological and physiological evidence in rat hippocampal slices. J Clin Invest 1998;101:112132.
  • 31
    Daikhin Y, Yudkoff M. Ketone bodies and brain glutamate and GABA metabolism. Dev Neurosci 1998;20:35864.
  • 32
    Erecinska M, Nelson D, Daikhin Y, et al. Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J Neurochem 1996;67:232534.
  • 33
    Devivo DC, Leckie MP, Ferrendelli JS, et al. Chronic ketosis and cerebral metabolism. Ann Neurol 1978;3:3317.
  • 34
    Nakazawa M, Kodama S, Matsuo T. Effects of ketogenic diet on electroconvulsive threshold and brain contents of adenosine nucleotides. Brain Dev 1983;5:37580.
  • 35
    Pan JW, Bebin EM, Chu WJ, et al. Ketosis and epilepsy: 31P spectroscopic imaging at 4.1T. Epilepsy 1999;40:7037.
  • 36
    Al-Mudallal AS, Levin BE, Lust WD, et al. Effects of unbalanced diets on cerebral glucose metabolism in the adult rat. Neurology 1995;45:22615.
  • 37
    Wada H, Okada Y, Nabetani M, et al. The effects of lactate and BHB on the energy metabolism and neuronal activity of hippocampal slices from adult and immature rat. Dev Brain Res 1997;101:17.
  • 38
    Figlewicz DP. Endocrine regulation of neurotransmitter transporters. Epilepsy Res 1999;37:20310.
  • 39
    Voskuyl RA, Vreugdenhil M, Kang JX, et al. Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. Eur J Pharm 1998;341:14552.
  • 40
    Schwartzkroin PA. Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Res 1999;37:17180.
  • 41
    Hawkins RA, Williamson DH, Krebs HA. Ketone body utilization by adult and suckling rat brain in vivo. Biochem J 1971;122:138.
  • 42
    Cremer JE. Substrate utilization and brain development. J Cereb Blood Flow Metab 1982;2:394407.
  • 43
    Novotny EJ, Rothman DL. Observation of cerebral ketone bodies by 1H NMR spectroscopy. Ann Neurol 1996;40:385.
  • 44
    Pan JW, Rothman DL, Behar Kl, et al. Human brain BHB and lactate increase in fasting-induced ketosis. J Cereb Blood Flow Metab 2000;20:15027.
  • 45
    Hamberger A, Van Gelder NM. Metabolic manipulation of neural tissue to counter the hypersynchronous excitation of migraine and epilepsy. Neurochem Res 1993;18:5039.
  • 46
    Sherwin AL. Neuroactive amino acids in focally epileptic human brain: a review. Neurochem Res 1999;124:138795.
  • 47
    DeFelipe J. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classical neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 1993;3:27389.
  • 48
    Ribak CE, Yan X-X. GABA neurons in the neocortex. In: MartinDL, OlsenRW, eds. GABA in the nervous system: the view at fifty years. Philadelphia: Lippincott Williams & Wilkins, 2000:35768.
  • 49
    Martin DL, Tobin AJ. Mechanisms controlling GABA synthesis and degradation in the brain. In: MartinDL, OlsenRW, eds. GABA in the nervous system: the view at fifty years. Philadelphia: Lippincott Williams & Wilkins, 2000:2541.
  • 50
    Ottersen OP, Zhang N, Walberg F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 1992;46:51934.
  • 51
    Mason GF, Gruetter R, Rothman DL, et al. Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 1995;18:1225.
  • 52
    Fonnum F. Regulation of the synthesis of the transmitter glutamate pool. Prog Biophys Mol Biol 1993;60:4757.
  • 53
    Takahashi M, Bikkups B, Rossi D, et al. The role of glutamate transporters in glutamate homeostasis in the brain. J Exp Biol 1997;200:4019.
  • 54
    Rothstein JD, Martin L, Dykes-Homberg M, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996;16:67586.
  • 55
    Conti F, Minelli A. Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-l-norleucine (DON), an inhibitor of phosphate-activated glutaminase. J Histochem Cytochem 1994;42:71726.
  • 56
    Fyske EM, Fonnum F. Amino acid neurotransmission: dynamics of vesicular uptake. Neurochem Res 1996;21:105360.
  • 57
    Petroff OAC, Rothman DL, Behar KL, et al. Initial observations on the effect of vigabatrin on the in vivo 1H spectroscopic measurements of GABA, glutamate, and glutamine in human brain. Epilepsia 1995;36:45764.
  • 58
    Petroff OAC, Rothman DL, Behar KL, et al. Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures. Seizure 1999;8:1207.DOI: 10.1053/seiz.1999.0267
  • 59
    Petroff OAC, Hyder F, Rothman DL, et al. Functional imaging in the epilepsies: proton MRS, GABA & glutamate. Adv Neurol 2000;83:26372.
  • 60
    Woermann FG, McLean MA, Bartlett PA, et al. Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol 1999;45:36976.DOI: 10.1002/1531-8249(199903)45:3<369::aid-ana13>;2-q
  • 61
    Sherwin AL, Van Gelder NM. Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy. Adv Neurol 1986;44:101132.
  • 62
    Petroff OAC, Pleban LA, Spencer DD. Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of epileptic human brain. Magn Reson Imaging 1995;13:1197211.
  • 63
    Kälviäinen R, Halonen T, Pitkänen A, et al. Amino acid levels in the cerebrospinal fluid of newly diagnosed epileptic patients: effect of vigabatrin and carbamazepine monotherapies. J Neurochem 1993;60:124450.
  • 64
    Gruetter R, Seaquist ER, Kim S, et al. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 Tesla. Dev Neurosci 1998;20:3808.
  • 65
    Chen W, Zhu X-H, Gruetter R, et al. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI. Magn Reson Med 2001;45:34955.DOI: 10.1002/1522-2594(200103)45:3<349::aid-mrm1045>;2-8
  • 66
    Petroff OAC, Errante LD, Kim JH, et al. Glutamine synthesis and glutamate-glutamine cycling are low in patients with hippocampal sclerosis. Epilepsia 2000;41(suppl 7):160.
  • 67
    Schousboe A, Westergaard N. Transport of neuroactive amino acids in astrocytes. In: KettenmannH, RansomBR, eds. Neuroglia. New York: Oxford University, 1995:24658.
  • 68
    Wiesinger H. Glia-specific enzyme systems. In: KettenmannH, RansomBR, eds. Neuroglia. New York: Oxford University, 1995:48899.
  • 69
    Schousboe A, Westergaard N, Sonnewald U, et al. Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA. Prog Brain Res 1992;94:199211.
  • 70
    Sonnewald U, Westergaard N, Schousboe A, et al. Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 1993;22:1929.
  • 71
    Kapetanovic IM, Yonkawa WD, Kupferberg HJ. Time-related loss of glutamine from hippocampal slices and concomitant changes in neurotransmitter amino acids. J Neurochem 1993;61:86572.
  • 72
    Roettger VR, Amara SG. GABA and glutamate transporters: therapeutic and etiological implications for epilepsy. Adv Neurol 1999;79:55160.
  • 73
    Martin DL, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 1993;60:395407.
  • 74
    Baxter CF. The nature of gamma-aminobutyric acid. In: LajthaA, ed. Handbook of neurochemistry. Vol III. New York: Plenum Press, 1970:289353.
  • 75
    Bu D-F, Erlander MG, Hitz BC, et al. Two human glutamate decarboxylase, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci U S A 1992;89:21159.
  • 76
    Soghomonian J-J, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 1998;19:5005.
  • 77
    Kash SF, Johnson RS, Tecott LH, et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 1997;94:140605.
  • 78
    Asada H, Kawamura Y, Maruyama K, et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 1997;94:64969.
  • 79
    Ji F, Kanbara N, Obata K. GABA and histogenesis in fetal and neonatal mouse brain lacking both isoforms of glutamic acid decarboxylase. Neurosci Res 1999;33:18794.
  • 80
    Petroff OAC, Rothman DL. Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol 1998;16:97121.
  • 81
    Petroff OAC, Behar KL, Rothman DL. New NMR measurements in epilepsy: measuring brain GABA in patients with complex partial seizures. Adv Neurol 1999;79:94551.
  • 82
    Petroff OAC, Rothman DL, Behar KL, et al. Low brain GABA level is associated with poor seizure control. Ann Neurol 1996;40:90811.
  • 83
    Petroff OAC, Mattson RH, Behar KL, et al. Vigabatrin increases human brain homocarnosine and improves seizure control. Ann Neurol 1998;44:94852.
  • 84
    Meldrum BS. Epilepsy and gamma-aminobutyric-acid-mediated inhibition. Int Rev Neurobiol 1975;17:136.
  • 85
    Bradford HF. Glutamate, GABA, and epilepsy. Prog Neurobiol 1995;47:477511.
  • 86
    Mueller SG, Weber OM, Duc CO, et al. Effects of vigabatrin on brain GABA+/CR signals in patients with epilepsy monitored by H-NMR-spectroscopy: responder characteristics. Epilepsia 2001;42:2940.
  • 87
    Haglund MM, Berger MS, Kunkel DD, et al. Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. J Neurosurg 1992;77:20916.
  • 88
    Marco P, Sola RG, Pulido P, et al. Inhibitory neurons in the human epileptogenic temporal neocortex: an immunocytochemical study. Brain 1996;119:132747.
  • 89
    Spreafico R, Battaglia G, Arcelli P, et al. Cortical dysplasia: an immunocytochemical study of three patients. Neurology 1998;50:2736.
  • 90
    Petroff OAC, Hyder F, Collins T, et al. Acute effects of vigabatrin on brain GABA and homocarnosine in patients with complex partial seizures. Epilepsia 1999;40:95864.
  • 91
    Wasterlain CG, Baxter CF, Baldwin RA. GABA metabolism in the substantia nigra, cortex, and hippocampus during status epilepticus. Neurochem Res 1993;18:52731.
  • 92
    Behar K, Boehm D. Measurement of GABA following GABA-transaminase inhibition by gabaculine: a 1H and 31P NMR spectroscopic study of rat brain in vivo. Magn Reson Med 1994;31:6607.
  • 93
    Lloyd KG, Bossi L, Morselli PL, et al. Altered GABA-mediated synaptic transmission in human epilepsy. Adv Neurol 1986;44:103344.
  • 94
    Mathern GW, Mendoza D, Lozada A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 1999;52:45372.
  • 95
    Rimvall K, Martin DL. The level of GAD67 protein is highly sensitive to small increases in intraneuronal gamma-aminobutyric acid levels. J Neurochem 1994;62:137581.
  • 96
    Manor D, Rothman DL, Mason GF, et al. The rate of turnover of cortical GABA from (1-13C)glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA). Neurochem Res 1996;21:103747.
  • 97
    Sheikh SN, Martin DL. Elevation of brain GABA levels with vigabatrin (gamma-vinyl GABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain. J Neurosci Res 1998;52:73641.
  • 98
    Jakobs C, Jaeken J, Gibson KM. Inherited disorders of GABA metabolism. J Inherit Metab Dis 1993;16:70415.
  • 99
    Peltola J, Kulmala P, Isojarvi J, et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 2000;55:4650.
  • 100
    Wood JH, Hare TA, Glaeser BS, et al. Low cerebrospinal fluid gamma-aminobutyric acid content in seizure patients. Neurology 1979;29:12038.
  • 101
    During MJ, Ryder KM, Spencer DD. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 1995;376:1747.
  • 102
    Gram L, Larsson OM, Johnsen A, et al. Experimental studies of the influence of vigabatrin on the GABA system. Br J Clin Pharmacol 1989;27(suppl 1):13S7S.
  • 103
    Gaspary HL, Wang W, Richerson GB. Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J Neurophysiol 1998;80:27081.
  • 104
    Kasteleijn-Nolst Trenité DGA. Reflex seizures induced by intermittent light stimulation. Adv Neurol 1997;75:99121.
  • 105
    Bauer G, Bauer R. EEG, drug effects, and central nervous system poisoning. In: NiedermeyerE, Lopez Da SilvaF, eds. Electroencephalography. 4th ed. Baltimore: Williams & Wilkins, 1999:67191
  • 106
    Janz D, Durner M. Juvenile myoclonic epilepsy. In: EngelJ, PedleyTA, eds. Epilepsy: a comprehensive textbook. Philadelphia: Lippincott-Raven Press, 1997:2389400.
  • 107
    Lloyd KG, Scatton B, Voltz C, et al. Cerebrospinal fluid amino acid and monoamine metabolite levels of Papio papio: correlation with photosensitivity. Brain Res 1986;363:3904.
  • 108
    Meldrum BS, Wilkins AJ. Photosensitive epilepsy in man and the baboon. In: SchwartzkroinPA, WhealH, eds. Electrophysiology of epilepsy. London: Academic Press, 1984:5177.
  • 109
    Menini C, Silva-Barrat C. The photosensitive epilepsies of the baboon: a model of generalized reflex epilepsy. Adv Neurol 1997;75:2947.
  • 110
    Rimmer EM, Milligan NM, Richens A. A comparison of the acute effect of single doses of vigabatrin and sodium valproate on photosensitivity in epileptic patients. Epilepsy Res. 1987;1:33946.
  • 111
    Cracco JB, Rossini PM. Evoked responses and transcranial brain stimulation: application to reflex epilepsy. Adv Neurol 1998;75:4967.
  • 112
    Behar KL, Rothman DL, Petersen KF, et al. Preliminary evidence of reduced cortical GABA levels in localized 1-H-MR spectra of alcohol-dependent and hepatic encephalopathy patients. Am J Psychiatry 1999;156:9524.
  • 113
    Petroff OAC, Hyder F, Rothman DL, Mattson RH. Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Neurology 2001;56:70915.
  • 114
    Yasumi M, Sato K, Shimada S, et al. Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Brain Res Mol Brain Res 1997;44:20518.
  • 115
    Levi G, Raiteri M. Carrier-mediated release of neurotransmitters. Trends Neurosci 1993;16:4159.
  • 116
    Wu Y, Wang W, Richerson GB. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux though reversal of the GABA transporter. J Neurosci 2001;21:26309.
  • 117
    Bernstein EM, Quick MW. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J Biol Chem 1999;274:88995.
  • 118
    Fergus A, Lee KS. GABAergic regulation of cerebral microvascular tone in the rat. J Cereb Blood Flow Metab 1997;17:9921003.
  • 119
    Zoli M, Jansson A, Sykova E, et al. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 1999;20:14250.
  • 120
    Wood JD, Davies M. Regulation of the GABAA receptor/ion channel complex by intracellular GABA levels. Neurochem Res 1991;16:3759.
  • 121
    Benson DL, Huntsman MM, Jones EG. Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. Cereb Cortex 1994;4:4051.
  • 122
    Jones EG. GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 1993;3:36172.
  • 123
    Suedfeld P. The benefits of boredom: sensory deprivation reconsidered. Am Sci 1975;63:619.
  • 124
    Harris JP, Phillipson OT. Effects of lorazepam on human contrast sensitivity. Psychopharmacology 1995;117:37984.
  • 125
    Boroojerdi B, Bushara KO, Corwell B, et al. Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex 2000;10:52934.
  • 126
    Boroojerdi B, Cohen LG, Petroff OA, et al. Mechanisms of light deprivation-induced enhancement of visual cortex excitability [Abstract]. Soc Neurosci 2000;26:821.