• 1
    Holmes GL, Gairsa JL, Chevassus-Au-Louis N, et al. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 1998;44: 84557.
  • 2
    Holmes GL, Sarkisian MR, Ben-Ari Y, et al. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 1999;404: 53753.
  • 3
    Huang LT, Yang SN, Liou CW, et al. Pentylenetetrazole-induced recurrent seizures in rat pups: time course on spatial learning and long-term effects. Epilepsia 2002;43: 56773.
  • 4
    McCabe BK, Silveira DC, Cilio MR, et al. Neonatal seizures result in a decrease in neurogenesis in the dentate. J Neurosci 2001;21: 2094103.
  • 5
    Vallee M, Mayo W, Dellu F, et al. Perinatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 1997;17: 262636.
  • 6
    Kehoe P, Blass EM. Opioid-mediation of separation distress in 10-day-old rats: reversal of stress with maternal stimuli. Dev Psychobiol 1986;19: 38598.
  • 7
    Hennessy MB, Moorman L. Factors influencing cortisol and behavioral responses to maternal separation in guinea pigs. Behav Neurosci 1989;103: 37885.
  • 8
    Heidbreder CA, Weiss IC, Domeney AM, et al. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 2000;100: 74968.
  • 9
    Penke Z, Felszeghy K, Fernette B, et al. Postnatal maternal deprivation produces long-lasting modifications of the stress response, feeding and stress-related behaviour in the rat. Eur J Neurosci 2001;14: 74755.
  • 10
    Kehoe P, Clash K, Skipsey K, et al. Brain dopamine response in isolated 10-day-old rats: assessment using D2 binding and dopamine turnover. Pharmacol Biochem Behav 1996;53: 419.
  • 11
    Ovtscharoff W Jr, Braun K. Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus. Neuroscience 2001;104: 3340.
  • 12
    Impey S, Smith DM, Obrietan K, et al. Stimulation of the cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1998;1: 595601.
  • 13
    Silva AJ, Kogan JH, Frankland PW, et al. CREB and memory. Annu Rev Neurosci 1998;21: 12748.
  • 14
    Deisseroth K, Heist EK, Tsien RW. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 1998;392: 198202.
  • 15
    Bailey CH, Bartsch D, Kandel ER. Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A 1996;93: 1344552.
  • 16
    Lamprecht R. CREB: a message to remember. Cell Mol Life Sci 1999;55: 55463.
  • 17
    Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001;2: 599609.
  • 18
    Yin JC, Tully T. CREB and the formation of long-term memory. Curr Opin Neurobiol 1996;6: 2648.
  • 19
    Yin JC, Del Vecchio M, Zhou H, et al. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 1995;81: 10715.
  • 20
    Yin JC, Wallach JS, Del Vecchio M, et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 1994;79: 4958.
  • 21
    Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001;294: 10308.
  • 22
    Dash PK, Moore AN. Characterization and phosphorylation of CREB-like proteins in Aplysia central nervous system. Brain Res Mol Brain Res 1996;39: 4351.
  • 23
    Bartsch D, Ghirardi M, Skehel PA, et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 1995;83: 97992.
  • 24
    Williams BM, Luo Y, Ward C, et al. Environmental enrichment: effects on spatial memory and hippocampal CREB immunoreactivity. Physiol Behav 2001;73: 64958.
  • 25
    Bourtchuladze R, Frenguelli B, Blendy J, et al. Deficient long-term memory in mice with a targeted mutation of the cAMP- responsive element-binding protein. Cell 1994;79: 5968.
  • 26
    Impey S, Mark M, Villacres EC, et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 1996;16: 97382.
  • 27
    Guzowski JF, McGaugh JL. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci U S A 1997;94: 26938.
  • 28
    Lamprecht R, Hazvi S, Dudai Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci 1997;17: 844350.
  • 29
    Gallyas F, Wilff JR, Bottcher H, et al. A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous system. Stain Technol 1980;55: 299306.
  • 30
    Bartus RT, Dean RL, Mennerick S, et al. Temporal ordering of pathogenic events following transient global ischemia. Brain Res 1998;790: 113.
  • 31
    Toth Z, Yan X-X, Haftoglou S, et al. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 1998;18: 428594.
  • 32
    Jeltsch H, Bertrand F, Lazarus C, et al. Cognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory tested. Neurobiol Learn Mem 2001;76: 81105.
  • 33
    Yang SN. Sustained enhancement of AMPA receptor- and NMDA receptor-mediated currents induced by dopamine D1/D5 receptor activation in the hippocampus: an essential role of postsynaptic Ca2+. Hippocampus 2000;10: 5763.
  • 34
    Pennypacker KR, Walczak D, Thai L, et al. Kainate-induced changes in opioid peptide genes and AP-1 protein expression in the rat hippocampus. J Neurochem 1993;60: 20411.
  • 35
    Wasterlain CG. Recurrent seizures in the developing brain are harmful. Epilepsia 1997;38: 72834.
  • 36
    Holmes GL, Ben-Ari Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatric Res 2001;49: 3205.
  • 37
    Lemaire V, Koehl M, Le Moal M, et al. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A 2000;97: 110327.
  • 38
    Bartesagfi R, Serrai A. Effects of early environment on granule cell morphology in the dentate gyrus of the guinea-pig. Neuroscience 2001;102: 87100.
  • 39
    Gould E, Beylin A, Tanapat P, et al. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999;2: 2605.
  • 40
    Schlessinger AR, Cowan WM, Gottlieb DI. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 1975;159: 14976.
  • 41
    Kehoe P, Shoemaker WJ, Triano L, et al. Adults rats stressed as neonates showed exaggerated behavioral response to both pharmacological and environmental challenges. Behav Neurosci 1998;112: 110.
  • 42
    Kehoe P, Bronzino JD. Neonatal stress alters LTP in freely moving male and female rats. Hippocampus 1999;9: 6518.
  • 43
    Baram TZ, Hatalski CG. Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci 1998;21: 4716.
  • 44
    McCormick CM, Kehoe P, Kovacs S. Corticosterone release in response to repeated short episodes of neonatal isolation: evidence of sensitization. Int J Dev Neurosci 1998;16: 17585.
  • 45
    Stanton ME, Gutierrez YR, Levine S. Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav Neurosci 1988;102: 692700.
  • 46
    Kehoe P, Mallinson K, McCormick CM, et al. Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Dev Brain Res 2000;124: 1336.
  • 47
    Sapolsky RM, Meaney MJ. Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res 1986;39: 6476.
  • 48
    Landfield PW, Waymire J, Lynch G. Hippocampal aging and adrenocorticoids: a quantitative correlation. Science 1978;202: 1098102.
  • 49
    Sapolsky RM. A mechanism of glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci 1985;5: 122832.
  • 50
    Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implication for aging. J Neurosci 1985;5: 12216.
  • 51
    Landfield PW, Eldridge JC. The glucocorticoid hypothesis of brain aging and neurodegeneration: recent modification. Acta Endocrinol 1991;125: 5464.
  • 52
    Sapolsky RM. Stress, the aging brain and the mechanisms of neuron death. Cambridge, MA: MIT Press, 1992:423.
  • 53
    Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron 1998;20: 4658.
  • 54
    Silva AJ, Steven CF, Tonegawa S, et al. Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science 1992;257: 2016.
  • 55
    Mathern GW, Babb TL, Vickrey BG, et al. The clinical-pathologic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 1995;118: 10518.
  • 56
    Nelson KG, Ellenberg JH. Predictors of epilepsy in children who have experienced febrile seizures. N Engl J Med 1976;295: 102933.
  • 57
    Mathern GW, Price G, Rosales C, et al. Anoxia during kainate status epilepticus shortens behavioral convulsions but generates hippocampal neuron loss and supragranular mossy fiber sprouting. Epilepsy Res 1998;30: 13351.
  • 58
    Katzir H, Mendoza D, Mathern GW. Effect of theophylline and trimethobenzamide when given during kainate-induced status epilepticus: an improved histopathologic rat model of human hippocampal sclerosis. Epilepsia 2000;41: 13909.