SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Traub RD, Borck C, Colling SB, et al. On the structure of ictal events in vitro. Epilepsia 1996;3: 87991.
  • 2
    Celesia GG. Disorders of membrane channels or channelopathies. Clin Neurophysiol 2001;112: 218.
  • 3
    Meisler MH, Kearney J, Ottman R, et al. Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001;35: 56788.
  • 4
    Steinlein OK, Noebels JL. Ion channels and epilepsy in man and mouse. Curr Opin Genet Dev 2000;10: 28691.
  • 5
    Denac H, Mevissen M, Scholtysik G. Structure, function and pharmacology of voltage-gated sodium channels. Naunyn Schmiederbergs Arch Pharmacol 2000;362: 45379.
  • 6
    Taylor CP, Narasimhan LS. Sodium channels and therapy of central nervous system diseases. Adv Phramacol 1997;39: 4798.
  • 7
    Donahue LM, Coates PW, Lee VH, et al. The cardiac sodium channel mRNA is expressed in the developing and adult rat and human brain. Brain Res 2000;887: 33543.
  • 8
    Gautron S, Dos Santos G, Pinto-Henrique D, et al. The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci U S A 1992;89: 72726.
  • 9
    Goldin AL, Barchi RL, Caldwell JH, et al. Nomenclature of voltage-gated sodium channels. Neuron 2000;28: 3658.
  • 10
    Hartmann HA, Colom LV, Sutherland ML, et al. Selective localization of cardiac sodium channels in limbic regions of rat brain. Nat Neurosci 1999;2: 5935.
  • 11
    Kayano T, Noda M, Flockerzi V, et al. Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett 1988;228: 18794.
  • 12
    Noda M, Ikeda T, Kayano T, et al. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 1986;320: 18892.
  • 13
    Schaller KL, Krzemien DM, Yarowsky PJ, et al. A novel, abundant sodium channel expressed in neurons and glia. J Neurosci 1995;15: 323142.
  • 14
    Felts PA, Yokoyama S, Dib-Hajj S, et al. Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Mol Brain Res 1997;45: 7182.
  • 15
    Taylor CP, Meldrum BS. Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci 1995;1630: 916.
  • 16
    Chen YH, Romanos MA, Whittaker WRJ, et al. Cloning, distribution and functional analysis of the type III sodium channel from human brain. Eur J Neurosci 2000;12: 42819.
  • 17
    Isom LL. Sodium channel beta subunits: anything but auxiliary. Neuroscientist 2001;7: 4254.
  • 18
    Isom LL, DeJongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994;12: 118394.
  • 19
    Malhotra JD, Chen C, Rivolta I, et al. Characterization of sodium channel alpha and beta subunits in rat and mouse cardiac myocytes. Circulation 2001;103: 130310.
  • 20
    Goldin AL. Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci 1999;868: 3850.
  • 21
    Shah BS, Stevens EB, Pinnock RD, et al. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit β3, in rat CNS. J Physiol 2001;534: 76376.
  • 22
    Feher O, Simigla F. A computer model of the convulsive membrane. Neurobiology 1993;1: 5563.
  • 23
    Traub RD, Llinas R. Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol 1979;42: 47696.
  • 24
    Willis JB, Ge YC, Wheal HV. Simulation of epileptiform activity in the hippocampus using transputers. J Neurosci Methods 1993;47: 20513.
  • 25
    Feher O, Erdelyi L, Papp A. The effect of pentylenetetrazol on the metacerebral neuron of Helix pomatia. Gen Physiol Biophys 1988;7: 50516.
  • 26
    Zhai J, Wieland SJ, Sessler FM. Chronic cocaine intoxication alters hippocampal sodium channel function. Neurosci Lett 1997;229: 1214.
  • 27
    Ellerkmann RK, Riazanski V, Elger CE, et al. Slow recovery from inactivation regulates the availability of voltage-dependent Na+ channels in hippocampal granule cells, hilar neurons and basket cells. J Physiol 2001;532: 38597.
  • 28
    Fleidervish IA, Friedman A, Gutnick MJ. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea pig neocortical neurones in slices. J Physiol 1996;493: 8397.
  • 29
    Mickus T, Jung H, Spruston N. Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal cells. Biophys J 1999;76: 84660.
  • 30
    Spruston N, Schiller Y, Stuart G, et al. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 1995;268: 297300.
  • 31
    Siep E, Richter A, Speckmann E-J, et al. Sodium currents in striatal neurons from dystonic dtSZ hamsters. Soc Neurosci Abstr 2000;26: 572.18
  • 32
    Siep E, Richter A, Löscher W, et al. Sodium currents in striatal neurons from dystonic dtsz hamsters: altered response to lamotrigine. Neurobiol Dis 2002;9: 25868
  • 33
    Raman IM, Sprunger LK, Meisler MH, et al. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of SCN8a mutant mice. Neuron 1997;19: 88191.
  • 34
    Tian LM, Otoom S, Alkadhi KA. Endogenous bursting due to altered sodium channel function in rat hippocampal CA1 neurons. Brain Res 1995;680: 16472.
  • 35
    Dorman DC, Beasley VR. Neurotoxicology of pyrethrin and the pyrethroid insecticides. Vet Hum Toxicol 1991;33: 2343.
  • 36
    Hong JS, Herr DW, Hudson PM, et al. Neurochemical effects of DDT in rat brain in vivo. Arch Toxicol Suppl 1996;9: 1426.
  • 37
    Narahashi T. Cellular and molecular mechanisms of action of insecticides: neurophysiological approach. Neurobehav Toxicol 1982;4: 7538.
  • 38
    Narahashi T, Frey JM, Ginsburg KS, et al. Sodium and GABA-activated channels as the targets of pyrethroids and cyclodienes. Toxicol Lett 1992;429–36: 645.
  • 39
    Allon N, Woody CD. Epileptiform activity induced in single cells of the sensorimotor cortex of the cat by intracellularly applied scorpion venom. Exp Neurol 1983;80: 4917.
  • 40
    Klee MR, Faber DS, Heiss WD. Strychnine and pentylenetetrazol-induced changes of excitability in aplysia neurons. Science 1973;179: 11336.
  • 41
    Speckmann E-J, Caspers H. Effects of pentylenetetrazol on isolated snail and mammalian neurons. In: ChalazonitisN, BoissonN, eds. Abnormal neuronal discharges. New York: Raven Press, 1978: 16576.
  • 42
    Hotson DA JR, Prince PA, Schwartzkroin. Anomalous inward rectification in hippocampal neurons. J Neurophysiol 1979;42: 88995.
  • 43
    Llinas R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebelllar slices. J Physiol 1980;305: 197213.
  • 44
    Connors BW, Gutnick MJ, Prince DA. Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 1982;48: 130220.
  • 45
    Gilly WF, Armstrong CM. Threshold channels: a novel type of sodium channel in squid giant axon. Nature 1985;309: 44850.
  • 46
    Jahnsen H, Llinas R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea pig thalamic neurons in vitro. J Physiol 1984;349: 22747.
  • 47
    Chao TI, Alzheimer C. Do neurons from neostriatum express both a TTX-sensitive and a TTX-insensitive slow Na+ current? J Neurophysiol 1995;74: 93441.
  • 48
    Hoehn K, Watson TW, MacVicar BA. A novel tetrodotoxin-insensitive, slow sodium current in striatal and hippocampal neurons. Neuron 1993;10: 54352.
  • 49
    Alonso A, Llinas R. Subthreshold Na+ dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 1989;342: 11757.
  • 50
    Cummins TR, Xia Y, Haddad GG. Functional properties of rat and human neocortical voltage sensitive sodium currents. J Neurophysiol 1994;71: 105264.
  • 51
    Taylor CP. Na+ currents that fail to inactivate. TINS 1993;16: 45560.
  • 52
    Ma JY, Catterall WA, Scheuer T. Persistent sodium currents through brain sodium channels induced by G protein betagamma subunits. Neuron 1997;19: 44352.
  • 53
    Stafstrom CE, Schwindt PC, Chubb MC, et al. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 1985;53: 15370.
  • 54
    Stafstrom CE, Schwindt OC, Crill WE. Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 1982;236: 2216.
  • 55
    Fleidervish IA, Gutnick MJ. Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J Neurophysiol 1996;76: 212530.
  • 56
    Huguenard JR, Hamill OP, Prince. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol 1988;59: 77895.
  • 57
    Alzheimer C, Schwindt PC, Crill WE. Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex. J Neurophysiol 1993;69: 2902.
  • 58
    Crill WE. Persistent sodium current in mammalian central neurons. Annu Rev Physiol 1996;58: 34962.
  • 59
    French CR, Sah P, Buckett KJ, et al. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 1990;95: 113957.
  • 60
    Brown AM, Schwindt PC, Crill WE. Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels. J Neurophysiol 1994;71: 25625.
  • 61
    Noda M, Suzuki H, Numa S, et al. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett 1989;259: 2136.
  • 62
    Gonoi T, Hille B. Gating of sodium channels: inactivation modifiers discriminate among models. J Gen Physiol 1987;89: 25374.
  • 63
    Alzheimer C, Schwindt PC, Crill WE. Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 1993;13: 66073.
  • 64
    Magistretti J, Ragsdale DS, Alonso A. High conductance sustained single-channel activity responsible for the low-threshold persistent Na+ current in entorhinal cortex neurons. J Neurosci 1999;19: 733441.
  • 65
    Noda M, Ikeda T, Suzuki H, et al. Expression of functional sodium channels from cloned cDNA. Nature 1986;322: 8268.
  • 66
    Suzuki S, Beckh H, Kubo N, et al. Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett 1988;228: 195200.
  • 67
    Moorman JR, Kirsch GE, VanDongen AMJ, et al. Fast and slow gating of sodium channels encoded by single mRNA. Neuron 1990;4: 24352.
  • 68
    Auld VJ, Golding AL, Krafte DS, et al. A rat brain Na+ channel subunit with novel gating properties. Neuron 1988;1: 44961.
  • 69
    Trimmer JS, Cooperman SS, Tomiko SA, et al. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 1989;3: 3349.
  • 70
    Zhou J, Potts JF, Trimmer JS, et al. Multiple gating modes and the effect of modulating factors on the αl sodium channel. Neuron 1991;7: 77585.
  • 71
    Numann R, Catterall WA, Scheuer T. Functional modulation of brain sodium channels by protein kinase C phosphorylation. Science 1991;254: 1158.
  • 72
    Waxman SG, Dib-Hajj S, Cummins TR, et al. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states. Brain Res 2000;886: 514.
  • 73
    Bendahhou S, Cummins TR, Hahn AF, et al. A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. J Clin Invest 2000;106: 4318.
  • 74
    Cummins TR, Zhou J, Sigworth FJ, et al. Funtional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron 1993;10: 6678.
  • 75
    Kager H, Wadman WJ, Somjen GG. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 2000;84: 495512.
  • 76
    Somjen GG, Muller M. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in issue slice. Brain Res 2000;885: 10210.
  • 77
    Azouz R, Jensen MS, Yaari Y. Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol 1996;492: 21133.
  • 78
    Stafstrom CE, Schwindt PC, Crill WE. Repetitive firing in layer V neurons from cat neocortex in vitro. J Neurophysiol 1984;52: 26478.
  • 79
    Dickson CT, Mena AR, Alonso A. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro. Neuroscience 1997;81: 93750.
  • 80
    Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. TINS 1990;13: 99104.
  • 81
    Chagnac-Amitai Y, Connors BW. Synchronized excitation and inihibition driven by intrinsically bursting neurons in neocortex. J Neurosci 1989;14: 75162.
  • 82
    Alkadhi KA, Tian LM. Veratridine-enhanced persistent sodium current induces bursting in CA1 pyramidal neurons. Neuroscience 1996;71: 62532.
  • 83
    Azouz R, Alroy G, Yaari Y. Modulation of endogenous firing patterns by osmolarity in rat hippocampal neurons. J Physiol 1997;502: 17587.
  • 84
    Franceschetti S, Guatteo E, Panzica F, et al. Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex. Brain Res 1995;696: 12739.
  • 85
    Deisz RA. A tetrodoxin-insensitive sodium current initiates burst firing of neocortical neurons. Neuroscience 1996;70: 34151.
  • 86
    Segal MM. Endogenous bursts underlie seizurelike activity in solitary excitatory hippocampal neurons in microcultures. J Neurophysiol 1994;72: 187484.
  • 87
    Lipowsky R, Gillessen T, Alzheimer C. Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J Neurophysiol 1996;76: 218191.
  • 88
    Magistretti J, Ragsdale DS, Alonso A. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones. J Physiol 1999;521: 362936.
  • 89
    Schwindt PC, Crill WE. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 1993;74: 22204.
  • 90
    Steriade M, Jones EG, Llinas RR. Thalamic oscillations and signalling. New York: John Wiley & Sons, 1990.
  • 91
    Gutfreund Y, Yarom Y, Segev I. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol 1995;483: 62140.
  • 92
    Hutcheon RM, Miura E, Puil. Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 1996;76: 68397.
  • 93
    Hutcheon RM, Miura E, Puil. Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 1996;76: 698714.
  • 94
    Agrawal N, Hamam BN, Magistretti J, et al. Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 2001;102: 5364.
  • 95
    Klink R, Alonso A. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol 1993;70: 14456.
  • 96
    Takakusaki K, Kitai ST. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience 1997;78: 77194.
  • 97
    Vreugdenhil M, Faas GC, Wadman WJ. Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis. Neuroscience 1998;86: 99107.
  • 98
    Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 1999;40: 151222.
  • 99
    Willow M, Taylor MS, Catterall WA, et al. Down regulation of sodium channels in nerve terminals of spontaneously epileptic mice. Cell Mol Neurobiol 1986;6: 21320.
  • 100
    Moneta ME, De La Fuente M, Liberona JL, et al. Sodium pathway markers in normal and kindled frog brains. Neurosci Lett 1986;65: 3315.
  • 101
    Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985;14: 375403.
  • 102
    Bartolomei F, Gastaldi M, Massacier A, et al. Changes in the mRNAs encoding subtypes I, II, and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol 1997;26: 66778.
  • 103
    Gastaldi M, Bartolomei F, Massacrier A, et al. Increase in mRNAs encoding neonatal II and III sodium channel alpha-isoforms during kainate-induced seizures in adult rat hippocampus. Mol Brain Res 1997;44: 17990.
  • 104
    Gastaldi M, Robagli-Schlupp A, Massacrier A, et al. mRNA coding for voltage-gated sodium channel β2 subunit in rat central nervous system: cellular distribution and changes following kainate-induced seizures. Neurosci Lett 1998;249: 536.
  • 105
    Onozuka M, Imai S, Furuichi H, et al. A specific 70K protein found in epileptic rat cortex: induction of bursting activity and negative resistance by its intracellular application in Euhadra neurons. J Neurobiol 1991;22: 28797.
  • 106
    Jabs R, Paterson IA, Walz W. Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of Na+ current and lack of P2 purinergic responses. Neuroscience 1997;81: 84760.
  • 107
    Jackson FR, Gitschier J, Strichartz GR, et al. Genetic modifications of voltage-sensitive sodium channels in Drosophila: gene dosage studies of the seizure locus. J Neurosci 1985;5: 114451.
  • 108
    O'Dowd DK, Aldrich RW. Voltage-clamp analysis of sodium channels in wild-type and mutant Drosophila neurons. J Neurosci 1988;8: 363343.
  • 109
    Jackson FR, Wilson SD, Strichartz GR, et al. Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster. Nature 1994;308: 18991.
  • 110
    Mita T, Sashihara S, Aramaki I, et al. Unusual biochemical development of genetically seizure-susceptible El mice. Dev Brain Res 1991;1764: 2735.
  • 111
    Sashihara S, Yanagihara N, Kobayashi H, et al. Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible El mice. Neuroscience 1992;48: 28591.
  • 112
    Sashihara S, Yanagihara N, Izumi F, et al. The effect of phenytoin on voltage-dependent Na+ channels in epileptic El mice. Jpn J Psychiatry Neurol 1993;47: 36970.
  • 113
    Sashihara S, Yanagihara SN, Izumi F, et al. Differential up-regulation of voltage-dependent Na+ channels induced by phenytoin in brains of genetically seizure-susceptible (El) and control (ddY) mice. Neuroscience 1994;62: 80311.
  • 114
    Rosenbluth J. Intramembranous particle patches in myelin-deficient rat axons. Neurosci Lett 1985;62: 1924.
  • 115
    Rosenbluth J. Axolemmal abnormalities in myelin mutants. Ann N Y Acad Sci 1990;605: 194214.
  • 116
    Rich SS, Annegers JF, Hauser WA, et al. Complex segregation analysis of febrile convulsions. Am J Hum Genet 1987;41: 24957.
  • 117
    Yamakawa K, Mitchell S, Hubert R, et al. Isolation and characterization of a candidate gene for progressive myoclonus epilepsy on 21q22.3. Hum Mol Genet 1995;4: 70916.
  • 118
    Lerche H, Jurkat-Rott K, Lehmann-Horn L. Ion channels and epilepsy. Am J Med Genet 2001;106: 14659.
  • 119
    Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel b1 subunit gene SCN1B. Nat Genet 1998;19: 36670.
  • 120
    Escayg A, Heils A, MacDonald BT, et al. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus and prevalence of variants in patients with epilepsy. Am J Hum Genet 2001;68: 86673.
  • 121
    Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24: 3435.
  • 122
    Sugawara T, Mazaki-Miyazaki E, Ito M, et al. Nav1.1 mutations cause febrile seizures associated with afebriale partial seizures. Neurology 2001;75: 7035.
  • 123
    Spampanato J, Escayg A, Meisler MH, et al. Functional effects of two voltage-gated channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J Neurosci 2001;21: 748190.
  • 124
    Alekov MM, Rahman N, Mitrovic F, et al. A sodium channel mutation causing epilepsy in man exhibits subtle defects in fast inactivation and activation in vitro. J Physiol 2000;529: 35339.
  • 125
    Alekov MD, Masmudur Rahman N, Mitrovic F, et al. Enhanced activation of the sodium channel associated with epilepsy in man. Eur J Neurosci 2001;13: 18.
  • 126
    Baulac S, Gourfinkel-An I, Picard F, et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am J Hum Genet 1999;65: 107885.
  • 127
    Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 2001;98: 63849.
  • 128
    Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function mutation in the sodium channel gene SCN2a results in seizures and behavioral abnormalities, Neuroscience 2001;102: 30717.
  • 129
    Claes L, Del-Favero J, Ceulemans B, et al. De novo mutation in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68: 132732.
  • 130
    Haug K, Sander T, Hallmann K, et al. The voltage-gated sodium channel beta2-subunit gene and idiopathic generalized epilepsy. Neuroreport 2000;11: 26879.
  • 131
    Wallace RH, Scheffer IE, Parasivam G, et al. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B. Neurology 2002;581: 4269.
  • 132
    Lombardo AJ, Kuzniecky R, Powers RE, et al. Altered brain sodium channel transcript levels in human epilepsy. Mol Brain Res 1996;35: 8490.
  • 133
    Lu CM, Han J, Rado TA, et al. Differential expression of two sodium channel subtypes in human brain. FEBS Lett 1992;303: 538.
  • 134
    Reckziegel G, Beck H, Schramm J, et al. Electrophysiological characterization of Na+ currents in acutely isolated human hippocampal dentate granule cells. J Physiol 1998;509: 13950.
  • 135
    Vreugdenhil M, Van Veelen CW, Rijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistent temporal lobe epilepsy. Epilepsy Res 1998;32: 30920.
  • 136
    Vreugdenhil M, Bruehl C, Voskuyl RA, et al. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 1996;93: 1255963.
  • 137
    Reckziegel G, Beck H, Schramm J, et al. Carbamazepine effects on Na+ currents in human dentate granule cells from epileptogenic tissue. Epilepsia 1999;40: 4017.
  • 138
    Labrakakis S, Patt P, Weydt J, et al. Action potential-generating cells in human glioblastomas. J Neuropathol Exp Neurol 1997;56: 24354.
  • 139
    Patt S, Labrakakis C, Bernstein M, et al. Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience 1996;71: 60111.
  • 140
    Schröder W, Hinterkeuser S, Seifert G, et al. Functional and molecular properties of human astrocytes in actute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 2000;41: S1814.
  • 141
    Bordey H, Sontheimer. Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 1998;32: 286303.
  • 142
    O'Connor ER, Sontheimer H, Spencer DD, et al. Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 1998;39: 34754.
  • 143
    Araque V, Parpura RP, Sazgiri PG, et al. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 1996;18: 68229.
  • 144
    Pasti L, Volterra A, Pozzan T, et al. Intracellular calcium oscillation in astrocytes: a highly plastic bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 1997;17: 781730.
  • 145
    Patt S, Steenbeck J, Hochstetter A, et al. Source localization and possible causes of interictal epileptic activity in tumor-associated epilepsy. Neurobiol Dis 2000;7: 2609.
  • 146
    Wyllie ed. The treatment of epilepsy. Philadelphia: Lea & Febiger, 1993.
  • 147
    Engel JA, Pedley TA, eds. Epilepsya: comprehensive textbook. Philadelphia: Lippincott-Raven, 1998.
  • 148
    Rambeck BU, Jürgens G, Straub HW, et al. Concentrations of antiepileptic drugs in the extracellular space of focal neocortical areas, cerebrospinal fluid, and in blood serum of epileptic patients (epilepsy surgery; microdialysis). Eur J Physiol Suppl 2002;443: S190.
  • 149
    Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res Rev 1988;26: 1628.
  • 150
    Ragsdale RS, McPhee JC, Scheuer T, et al. Common molecular determinants of local anaesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 1996;93: 92705.
  • 151
    Wilson AE, Brodie MJ. New antiepileptic drugs. Baillieres Clin Neurol 1996;5: 72347.
  • 152
    Kuo CC. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol 1998;54: 71221.
  • 153
    Kuo CC, Chen RS, Lu L, et al. Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Mol Pharmacol 1997;51: 107783.
  • 154
    Backus KH, Pflimlin P, Trube G. Action of diazepam on the voltage-dependent Na+ current: comparison with the effects of phenytoin, carbamazepine, lidocaine and flumazenil. Brain Res 1991;548: 419.
  • 155
    Lang DG, Wang CM, Cooper BR. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J Pharmacol Exp Ther 1993;266: 82935.
  • 156
    Willow M, Gonoi T, Catterall WA. Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 1985;27: 549258.
  • 157
    Song JH, Nagata K, Huang CS, et al. Differential block of two types of sodium channels by anticonvulsants. Neuroreport 1996;7: 3031303.
  • 158
    Rush AM, Elliott JR. Phenytoin and carbamazepine: differential inhibition of sodium currents in small cells from adult rat dorsal root ganglia. Neurosci Lett 1997;226: 958.
  • 159
    Schirrmacher K, Mayer A, Walden L, et al. Effects of carbamazepine on membrane properties of rat sensory spinal ganglion cells in vitro. Eur Neuropsychopharmacol 1995;5: 5017.
  • 160
    Ragsdale DS, Scheuer T, Catterall WA. Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anaesthetic, antiarrhythmic, and anticonvulsant drugis. Mol Pharmacol 1991;40: 75665.
  • 161
    Courtney KR, Etter EF. Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur J Pharmacol 1983;88: 19.
  • 162
    Schwarz JR, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia 1989;30: 28694.
  • 163
    Brown AM, McCrohan CR, Pamplin P. Inhibition of slow TTX-insensitive inward current by the anticonvulsant carbamazepine in an identified neuron of Lymnaea stagnalis. Comp Biochem Physiol 1992;103: 549451.
  • 164
    Lees G. The effects of anticonvulsants on 4-aminopyridine-induced bursting: in vitro studies on rat peripheral nerve and dorsal roots. Br J Pharmacol 1996;117: 5739.
  • 165
    Elliott P. Action of antiepileptic and anaesthetic drugs on Na- and Ca-spikes in mammalian non-myelinated axons. Eur J Pharmacol 1990;175: 15563.
  • 166
    Fern R, Ransom BR, Stys PK, et al. Pharmacological protection of CNS white matter during anoxia: actions of phenytoin, carbamazepine and diazepam. J Pharmacol Exp Ther 1993;266: 154955.
  • 167
    McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986;238: 72738.
  • 168
    Worley PF, Baraban JM. Site of anticonvulsant action on sodium channels: autoradiographic and electrophysiological studies in rat brain. Proc Natl Acad Sci U S A 1987;84: 30515.
  • 169
    Waldmeier PC, Martin P, Stocklin K, et al. Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum. Naunyn Schmiedebergs Arch Pharmacol 1996;354: 16472.
  • 170
    Willow M, Catterall WA. Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 1982;22: 62735.
  • 171
    Zimanyi SR, Weiss A, Lajtha RM, et al. Evidence for a common site of action of lidocaine and carbamazepine in voltage-dependent sodium channels. Eur J Pharmacol 1989;67: 41922.
  • 172
    Willow M, Kuenzel EH, Catterall WA. Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 1984;25: 22834.
  • 173
    Yoshimura R, Yanagihara N, Terao T, et al. Inhibition by carbamazepine of various ion channels-mediated catecholamine secretion in cultured bovine adrenal medullary cells. Naunyn Schmiedebergs Arch Pharmacol 1995;352: 297303.
  • 174
    Wakamori M, Kaneda M, Oyama Y, et al. Effects of chlordiazepoxide, chlorpromazine, diazepam, diphenylhydantoin, flunitrazepam and haloperidol on the voltage-dependent sodium current of isolated mammalian brain neurons. Brain Res 1989;494: 3748.
  • 175
    McLean MJ, Macdonald RL. Benzodiazepines, but not beta carbolines, limit high frequency repetitive firing of action potentials of spinal cord neurons in cell culture. J Pharmacol Exp Ther 1988;244: 78995.
  • 176
    Wamil AW, McLean MJ. Limitation by gabapentin of high frequency action potential firing by mouse central neurons in cell culture. Epilepsy Res 1994;17: 111.
  • 177
    Fohlmeister JF, Adelman WJ Jr, Brennan JJ. Excitable channel currents and gating times in the presence of anticonvulsants ethosuximide and valproate. J Pharmacol Exp Ther 1984;230: 7581.
  • 178
    Leresche N, Parri Hr, Erdemli G, et al. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci 1998;18: 484253.
  • 179
    Pisani A, Stefani A, Siniscalchi NB, et al. Electrophysiological actions of felbamate on rat striatal neurones. Br J Pharmacol 1995;116: 205361.
  • 180
    Taglialatela M, Ongini E, Brown AM, et al. Felbamate inhibits cloned voltage-dependent Na+ channels from human and rat brain. Eur J Pharmacol 1996;316: 3737.
  • 181
    White HS, Wolf HH, Swinyard EA, et al. A neuropharmacological evaluation of felbamate as a novel anticonvulsant. Epilepsia 1992;33: 56472.
  • 182
    Rock DM, Kelly KM, Macdonald RL. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Res 1993;16: 8998.
  • 183
    Taylor CP. The anticonvulsant lamotrigine blocks sodium currents from cloned alpha-subunits of rat brain Na+ channels in a voltage-dependent manner but gabapentin does not. Soc Neurosci Abst 1993;19.
  • 184
    Köhling R, Siep E, Lücke A, et al. Gabapentin enhances potassium currents and does not affect sodium currents (neurons B3, B4, Helix pomatia). Pflugers Arch Suppl 1996;431: R71.
  • 185
    Taylor CP. Mechanisms of action of new anti-epileptic drugs. In: ChadwickD, ed. New trends in epilepsy management: the role of gabapentin. London: Royal Society of Medicine Services, 1993: 1340.
  • 186
    Kuo CC, Lu L. Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br J Pharmacol 1997;121: 12318.
  • 187
    Stefani A, Spadoni F, Bernardi G. Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotective strategies. Exp Neurol 1997;147: 11522.
  • 188
    Xie X, Lancaster B, Peakman T, et al. Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hippocampal neurones. Pflugers Arch 1995;430: 43746.
  • 189
    Zona C, Avoli M. Lamotrigine reduces voltage-gated sodium currents in rat central neurons in culture. Epilepsia 1997;38: 5225.
  • 190
    Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 1992;13: 10712.
  • 191
    Grunze H, Greene RW, Möller H-J, et al. Lamotrigine may limit pathological excitation in the hippocampus by modulating a transient potassium outward current. Brain Res 1998;791: 3304.
  • 192
    Leach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 1986;27: 4907.
  • 193
    Lizasoain RG, Knowles S, Moncada. Inhibition by lamotrigine of the generation of nitric oxide in rat forebrain slices. J Neurochem 1995;64: 63642.
  • 194
    Draguhn A, Jungclaus M, Sokolowa S, et al. Losigamone decreases spontaneous synaptic activity in cultured hippocampal neurons. Eur J Pharmacol 1997;325: 24551.
  • 195
    Schmitz T, Gloveli, Heinemann U. Effects of losigamone on synaptic potentials and spike frequency habituation in rat entorhinal cortex and hippocampal CA1 neurones. Neurosci Lett 1995;200: 1413.
  • 196
    McLean MJ, Schmutz M, Wamil AW, et al. Oxcarbazepine: mechanisms of action. Epilepsia 1994;35: 59.
  • 197
    Narahashi T, Moore JW, Poston RN. Anesthetic blocking of nerve membrane conductances by internal and external applications. J Neurobiol 1969;1: 322.
  • 198
    Rehberg DS, Duch BW, Urban. The voltage-dependent action of pentobarbital on batrachotoxin-modified human brain sodium channels. Biochim Biophys Acta 1994;1194: 21522.
  • 199
    Mitchell MA, Peris J, Harris RA. Barbiturate tolerance and dependence: effects on synaptosomal sodium transport and membrane fluidity. Pharmacol Biochem Behav 1985;22: 95560.
  • 200
    Sugaya M, Onozuka H, Furuichi K, et al. Effect of phenytoin on intracellular calcium and intracellular protein changes during pentylenetetrazole-induced bursting activity in snail neurons. Brain Res 1985;327: 1618.
  • 201
    Molnar P, Erdo SL. Vinpocetine is as potent as phenytoin to block voltage-gated Na+ channels in rat cortical neurons. Eur J Pharmacol 1995;273: 3036.
  • 202
    Kuo CC, Bean BP. Na+ channels must deactivate to recover from inactivation. Neuron 1994;12: 81929.
  • 203
    Kuo CC, Bean BP. Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 1994;46: 71625.
  • 204
    Quandt FN. Modification of slow inactivation of single sodium channels by phenytoin in neuroblastoma cells. Mol Pharmacol 1988;34: 55765.
  • 205
    Segal MM, Douglas AF. Late sodium channel openings underlying epileptiform activity are preferentially diminished by the anticonvulsant phenytoin. J Neurophysiol 1997;77: 302134.
  • 206
    Chao TI, Alzheimer C. Effects of phenytoin on the persistent Na+ current of mammalian CNS neurones. Neuroreport 1995;6: 177880.
  • 207
    Lampl I, Schwindt P, Crill W. Reduction of cortical pyramidal neuron excitability by the action of phenytoin on persistent Na+ current. J Pharmacol Exp Ther 1998;284: 22837.
  • 208
    Tomaselli GF, Marban E, Yellen G. Sodium channels from human brain RNA expressed in Xenopus oocytes: basic electrophysiologic characteristics and their modification by diphenylhydantoin. J Clin Invest 1989;83: 172432.
  • 209
    Schauf CL. Anticonvulsants modify inactivation but not activation processes of sodium channels in Myxicola axons. Can J Physiol Pharmacol 1987;65: 12205.
  • 210
    McLean MJ, Bukhari AA, Wamil AW. Effects of topiramate on sodium-dependent action potential firing by mouse spinal cord neurons in cell culture. Epilepsia 2000;41: S214.
  • 211
    McLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 1983;227: 77989.
  • 212
    Brouillette WJ, Brown GD, DeLorey TM, et al. Sodium channel binding and anticonvulsant activities of hydantoins containing conformationally constrained 5-phenyl substituents. J Pharm Sci 1990;79: 8714.
  • 213
    Francis J, Burnham WM. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels. Mol Pharmacol 1992;42: 1097103.
  • 214
    Ferrendelli JA, Kinscherf DA. Similar effects of phenytoin and tetrodotoxin on cyclic nucleotide regulation in depolarized brain tissue. J Pharmacol Exp Ther 1978;207: 78793.
  • 215
    McKinney LC. Diphenylhydantoin reduces veratridine-induced sodium permeability in frog skeletal muscle. Neurosci Lett 1985;55: 1738.
  • 216
    Norris SK, King AE. Electrophysiological effects of the anticonvulsant remacemide hydrochloride and its metabolite ARL12495AA on rat CA1 hippocampal neurons in vitro. Neuropharmacology 1997;36: 9519.
  • 217
    Norris SK, King AE. The stereo-isomers of the anticonvulsant ARL 12495AA limit sustained repetitive firing and modify action potential properties of rat hippocampal neurons in vitro. J Pharmacol Exp Ther 1997;281: 11918.
  • 218
    Wamil AW, Cheung H, Harris EW, et al. Remacemide HCl and its metabolite, FPL 12495AA, limit action potential firing frequency and block NMDA responses of mouse spinal cord neurons in cell culture. Epilepsy Res 1996;23: 114.
  • 219
    Madeja M, Wolf C, Speckmann EJ. Reduction of voltage-operated sodium currents by the anticonvulsant drug sulthiame. Brain Res 2001;900: 8894.
  • 220
    Zona C, Ciotti MT, Avoli M. Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci Lett 1997;231: 1236.
  • 221
    DeLorenzo RJ, Sombati S, Coulter DA. Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia 2000;41: S404.
    Direct Link:
  • 222
    Perucca. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol Res 1997;35: 24156.
  • 223
    Wu SP, Tsai JJ, Gean PW. Frequency-dependent inhibition of neuronal activity by topiramate in rat hippocampal slices. Br J Pharmacol 1998;125: 82632.
  • 224
    Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 1990;8: 3137.
  • 225
    Van Dongen AMJ, Van Erp MG, Voskuyl RA. Valproate reduces excitability by blockage of sodium and potassium conductance. Epilepsia 1986;27: 17782.
  • 226
    Schauf CL. Bepridil and valproate retard Na+ reactivation in Myxicola. Eur J Pharmacol 1987;138: 8993.
  • 227
    Schauf CL. Zonisamide enhances slow sodium inactivation in Myxicola. Brain Res 1987;413: 1858.
  • 228
    Albus H, Williamson R. Electrophysiologic analysis of the actions of valproate on pyramidal neurons in the rat hippocampal slice. Epilepsia 1998;39: 12439.
  • 229
    Yamamoto R, Yanagita T, Kobayashi H, et al. Up-regulation of sodium channel subunit mRNAs and their cell surface expression by antiepileptic valproic acid: activation of calcium channel and catecholamine secretion in adrenal chromaffin cells. J Neurochem 1997;68: 165562.
  • 230
    Altrup U, Gerlach G, Reith H, et al. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia), I: antiepileptic actions. Epilepsia 1992;33: 74352.
  • 231
    Otoom SA, Alkadhi KA. Valproic acid intensifies epileptiform activity in hippocampal pyramidal neurons. Neurosci Res 1999;35: 299307.
  • 232
    Capek R, Esplin B. Effects of lidocaine on hippocampal pyramidal cells: depression of repetitive firing. Neuroreport 1994;5: 6814.
  • 233
    McLean MJ. In vitro electrophysiological evidence predicting anticonvulsant efficacy of memantine and flunarizine. Pol J Pharmacol Pharm 1987;39: 51325.
  • 234
    Pauwels PJ, Leysen JE, Janssen PA. Ca++ and Na+ channels involved in neuronal cell death: protection by flunarizine. Life Sci 1991;48: 188193.
  • 235
    Gleitz J, Beile A, Peters T. (±)-Kavain inhibits veratridine-activated voltage-dependent Na(+)-channels in synaptosomes prepared from rat cerebral cortex.. Neuropharmacology 1995;34: 11338.
  • 236
    Gleitz J, Friese J, Beile A, et al. Anticonvulsive action of (±)-kavain estimated from its properties on stimulated synaptosomes and Na+ channel receptor sites. Eur J Pharmacol 1996;315: 8997.
  • 237
    Ameri J. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitine mediated by interaction with voltage-dependent sodium channels. Naunyn Schmiedebergs Arch Pharmacol 1997;355: 27380.
  • 238
    Ameri J, Gleitz T, Peters. Aconitine inhibits epileptiform activity in rat hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 1996;354: 805.
  • 239
    Fischer W, Bodewei R, Satzinger G. Anticonvulsant and sodium channel blocking effects of ralitoline in different screening models. Naunyn Schmiedebergs Arch Pharmacol 1992;346: 44252.
  • 240
    Rock DM, McLean MJ, Macdonald RL, et al. Ralitoline (CI-946) and CI-953 block sustained repetitive sodium action potentials in cultured mouse spinal cord neurons and displace batrachotoxinin A 20-alpha-benzoate binding in vitro. Epilepsy Res 1991;8: 197203.
  • 241
    Benoit D, Escande. Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 1991;419: 6039.
  • 242
    Doble. The pharmacology and mechanism of action of riluzole. Neurology 1996;47:S.23–41.
  • 243
    Hebert T, Drapeau P, Pradier L, et al. Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 1994;45: 105560.
  • 244
    Jimonet P, Barreau M, Blanchard JC, et al. Synthesis, anticonvulsant and neuroprotective activities of RP 66055, a riluzole derivative. Bioorg Med Chem 1994;2: 7938.
  • 245
    Vreugdenhil M, Hoogland G, Van Veelen CWM, et al. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Soc Neurosci Abstr 1999;25: 604.
  • 246
    Tian LM, Alkadhi KA. Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala. Neuropharmacology 1994;33: 11318.
  • 247
    Taverna S, Mantegazza M, Franceschetti S, et al. Valproate selectively reduces the persitent fraction of Na+ current in neocortical neurons. Epilepsy Res 1998;32: 30408.
  • 248
    Taverna S, Sancini G, Mantegazza M, et al. Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther 1999;288: 9608.