SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Gironell A, Kulisevsky J, Barbanoj M, et al. A randomized placebo-controlled comparative trial of gabapentin and propranolol in essential tremor. Arch Neurol 1999;56: 47580.
  • 2
    Tremont-Lukats IW, Megeff C, Backonja MM. Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs 2000;60: 102952.
  • 3
    Mathew NT. Antiepileptic drugs in migraine prevention. Headache 2001;41(suppl 1):S1824.
  • 4
    Dougherty JA, Rhoney DH. Gabapentin: a unique anti-epileptic agent. Neurol Res 2001;23: 82129.
  • 5
    Taylor CP, Gee NS, Su TZ, et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 1998;29: 23349.
  • 6
    Surges R, Feuerstein TJ. Mode of action of gabapentin in chronic neuropathic pain syndromes: a short review about its cellular mechanisms in nociceptive neurotransmission. Arzneimittelforschung/Drug Res 2002;52: 5836.
  • 7
    Gee NS, Brown JP, Dissanayake VU, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 1996;271: 576876.
  • 8
    Stefani A, Spadoni F, Bernardi G. Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 1998;37: 8391.
  • 9
    Alden KJ, Garcia J. Differential effect of gabapentin on neuronal and muscle calcium currents. J Pharmacol Exp Ther 2001;297: 72735.
  • 10
    Stefani A, Spadoni F, Giacomini P, et al. The effects of gabapentin on different ligand- and voltage-gated currents in isolated cortical neurons. Epilepsy Res 2001;43: 23948.
  • 11
    Fink K, Dooley DJ, Meder WP, et al. Inhibition of neuronal Ca(2+) influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002;42: 22936.
  • 12
    Martin DJ, McClelland D, Herd MB, et al. Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 2002;42: 35366.
  • 13
    Schumacher TB, Beck H, Steinhauser C, et al. Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 1998;39: 35563.
  • 14
    Freiman TM, Kukolja J, Heinemeyer J, et al. Modulation of K+-evoked [3H]-noradrenaline release from rat and human brain slices by gabapentin: involvement of KATP channels. Naunyn Schmiedebergs Arch Pharmacol 2001;363: 53742.
  • 15
    Yaari Y, Beck H. “Epileptic neurons” in temporal lobe epilepsy. Brain Pathol 2002;12: 2349.
  • 16
    Su H, Sochivko D, Becker A, et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 2002;22: 364555.
  • 17
    McCormick D, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol 2001;63: 81546.
  • 18
    Maccaferri G, Mangoni M, Lazzari A, et al. Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J Neurophysiol 1993;69: 212936.
  • 19
    Lupica CR, Bell JA, Hoffman AF, et al. Contribution of the hyperpolarization-activated current [I(h)] to membrane potential and GABA release in hippocampal interneurons. J Neurophysiol 2001;86: 2618.
  • 20
    Pedarzani P, Storm JF. Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP. Proc Natl Acad Sci U S A 1995;92: 1171620.
  • 21
    Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996;58: 299327.
  • 22
    Surges R, Freiman TM, Feuerstein TJ. K+-induced changes in the properties of the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Neurosci Lett 2002;332: 13640.
  • 23
    Kaupp UB, Seifert R. Molecular diversity of pacemaker ion channels. Annu Rev Physiol 2001;63: 23557.
  • 24
    Brauer AU, Savaskan NE, Kole MH, et al. Molecular and functional analysis of hyperpolarization-activated pacemaker channels in the hippocampus after entorhinal cortex lesion. FASEB J 2001;15: 2689701.
  • 25
    Chen K, Aradi I, Thon N, et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 2001;7: 3317.
  • 26
    Brewster A, Bender RA, Chen Y, et al. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci 2002;22: 45919.
  • 27
    Gasparini S, DiFrancesco D. Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons. Pflugers Arch 1997;435: 99106.
  • 28
    Vollmer KO, Von Hodenberg A, Kolle EU. Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneimittelforschung 1986;36: 8309.
  • 29
    Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 2002;5: 76774.
  • 30
    Magee JC. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 1998;18: 761324.
  • 31
    Magee JC. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 1999;2: 50814.
  • 32
    Otis TS, De Koninck Y, Mody I. Lasting potentiation of inhibition is associated with an increased number of γ-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci U S A 1994;91: 7698702.
  • 33
    Buhl EH, Otis TS, Mody I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 1996;271: 36973.
  • 34
    Brooks-Kayal AR, Shumate MD, Jin H, et al. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat Med 1998;4: 116672.
  • 35
    Nusser Z, Hájos N, Somogyi P, et al. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 1998;395: 1727.
  • 36
    Chen K, Baram TZ, Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 1999;5: 88894.
  • 37
    Perucca E. The management of refractory idiopathic epilepsies. Epilepsia 2001;42(suppl 3):315.