SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Possani LD, Martin BM, Fletcher MD, et al. Discharge effect on pancreatic exocrine secretion produced by toxins purified from Tityus serrulatus scorpion venom. J Biol Chem 1991;266: 317885.
  • 2
    Sampaio SV, Arantes EC, Prado WA, et al. Further characterization of toxins T1IV (TsTX-III) and T2IV from Tityus serrulatus scorpion venom. Toxicon 1991;29: 66372.
  • 3
    Carvalho FF, Nencioni ALA, Lebrun I, et al. Behavioral, electroencephalographic and histopathologic effects of a neuropeptide isolated from Tityus serrulatus venom in rats. Pharmacol Biochem Behav 1998;60: 714.
  • 4
    Fletcher LF, Fletcher M, Fainter LK, et al. Action of new world scorpion venom and its neurotoxins in secretion. Toxicon 1996;34: 1399411.
  • 5
    Massensini AR, Moraes-Santos T, Gomez MV, et al. Alpha- and beta-scorpion toxins evoke glutamate release from rat cortical synaptosomes with different effects on [Na+]i and [Ca2+]i. Neuropharmacology 1998;37: 28997.
  • 6
    De Lima ME, Martin-Eauclaire ME, Chavez-Olortegui C, et al. Tityus serrulatus scorpion venom toxins display a complex pattern of antigenic reactivity. Toxicon 1993;31: 2237.
  • 7
    Martin-Eauclaire ME, Ceard B, Ribeiro AM, et al. Biochemical, pharmacological and genomic characterisation of Ts IV, an alpha-toxin from the venom of the South American scorpion Tityus serrulatus. FEBS Lett 1994;342: 1814.
  • 8
    Possani LD, Becerril B, Delepierre M, et al. Scorpion toxins specific for Na+-channels. Eur J Biochem 1999;264: 287300.
  • 9
    Wheeler KP, Watt DD, Lazdunski M. Classification of Na channel receptors specific for various scorpion toxins. Pflugers Archiv (Eur J Physiol) 1983;397: 1645.
  • 10
    Caterall WA. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 1986;55: 95385.
  • 11
    Coutinho-Neto J, Abdul-Ghani AS, Norris PJ, et al. The effects of scorpion venom toxin on the release of amino acid neurotransmitters from cerebral cortex in vivo and in vitro. J Neurochem 1980;35: 55865.
  • 12
    Sampaio SV, Coutinho-Netto J, Arantes EC, et al. Isolation of toxin TsTX-VI from Tityus serrulatus scorpion venom: effects on the release of neurotransmitters from synaptosomes. Biochem Mol Biol Int 1996;39: 72940.
  • 13
    Gomez MV, Farrell N. The effect of Tityustoxin and ruthenium red on the release of acetylcholine from slices of cortex of rat brain. Neuropharmacology 1985;24: 11037.
  • 14
    Nencioni ALA, Lebrun I, Dorce VAC. A microdialysis study of glutamate concentration in the hippocampus of rats after TsTx toxin injection and blockade of toxin effects by glutamate receptor antagonists. Pharmacol Biochem Behav 2003;74: 45563.
  • 15
    Tammaro P, Conti F, Moran O. Modulation of sodium current in mammalian cells by an epilepsy-correlated β1-subunit mutation. Biochem Biophys Res Commun 2002;291: 1095101.
  • 16
    Fisher RS, Coyle T. Summary: neurotransmitters and epilepsy. In: FisherRS, CoyleT, eds. Neurotransmitters and epilepsy. New York : Wiley-Liss, 1991: 24752.
  • 17
    Bagetta G, Nisticó G, Jolly O. Production of seizures and brain damage in rats by α-dendrotoxin, a selective K+ channel blocker. Neurosci Lett 1992;139: 3440.
  • 18
    Juhng KN, Kokate TG, Yamaguchi S, et al. Induction of seizures by the potent K+ channel-blocking scorpion venom peptide toxins tityustoxin-K (alpha) and pandinustoxin-K (alpha). Epilepsy Res 1999;34: 17786.
  • 19
    Schwarcz R, Zaczek R, Coyle JT. Microinjection of kainic acid into the rat hippocampus. Eur J Pharmacol1978;50: 20920.
  • 20
    Ben-Ari Y, Tremblay E, Ottersen O P, et al. The role of epileptic activity in hippocampal and remote cerebral lesions induced by kainic acid. Brain Res1980;191: 7997.
  • 21
    Ben-Ari Y, Tremblay E, Ottersen OP, et al. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience1980;5: 51528.
  • 22
    Ben-Ari Y, Tremblay E, Riche G, et al. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 1981;6: 136191.
  • 23
    Mellanby J, George G, Robinson A, et al. Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry 1977;40: 40414.
  • 24
    Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rat: behavioral, electroencephalographic and neuropathologic study. Behav Brain Res1983;9: 31535.
  • 25
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Sydney : Academic Press, 1998.
  • 26
    Babb TL, Kupfer WR, Pretorius JK, et al. Synaptic reorganization by mossy fibers in human epileptic fascia dentate. Neuroscience 1991;42: 35163.
  • 27
    Pinel JP, Rovner LI. Experimental epileptogenesis; kindling-induced epilepsy in rats. Exp Neurol 1978;58: 190202.
  • 28
    Cavalheiro EA, Riche DA, Le Gal La Salle G. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 1982;53: 5819.
  • 29
    Cavalheiro EA, Leite JP, Bortolotto ZA, et al. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991;32: 77882.
  • 30
    Hellier JL, Patrylo PR, Buckmaster PS, et al. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 1998;31: 7384.
  • 31
    Meiners LC, Van Gils A, Jansen GH, et al. Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis. AJNR Am J Neuroradiol1994;15: 154755.
  • 32
    Beach TG, Woodhurst WB, MacDonald DB, et al. Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci Lett 1995;191: 2730.
  • 33
    Sutula T, Cascino G, Cavazos J, et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26: 32130.
  • 34
    Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 1985;5: 101622.
  • 35
    Mello LEAM, Cavalheiro EA, Tan AM, et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 1993;34: 98595.
  • 36
    Ben-Ari Y, Represa A. Brief seizure episodes induce long-term potentiation and mossy fiber sprouting in the hippocampus. TINS 1990; 13:3128.
  • 37
    Cavazos J, Sutula T. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Psychiatr Clin Neurosci 1990;55: 54957.
  • 38
    Casaccia-Bonnefil P, Stelzer A, Federof HJ, et al. A role for mossy fiber activation in the loss of CA3 and hilar neurons induced by transduction of the GluR6 kainate receptor subunit. Neurosci Lett 1995;191: 6770.
  • 39
    Houser CR, Miyashiro JE, Swartz BE, et al. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990;10: 26782.
  • 40
    Houser CR, Swartz BE, Walsh GO, et al. Granule cell disorganization in the dentate gyrus: possible alterations of neuronal migration in human temporal lobe epilepsy. Epilepsy Res Suppl 1992;9: 418.
  • 41
    Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997;17: 372738.
  • 42
    Cornish SM, Wheal HV. Long-term loss of paired pulse inhibition in the kainic acid-lesioned hippocampus of the rat. Neuroscience 1989;28: 5671.
  • 43
    Bisaga A, Krzascik P, Jankowska E, et al. Effect of glutamate receptor antagonists on N-methyl-d-aspartate and (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced convulsant effects in mice and rats. Eur. J Pharmacol 1993;242: 21320.
  • 44
    Choi DW. Glutamate receptors and the induction of excitotoxic neuronal death. In: BloomF, ed. Progress in brain research. Amsterdam : Elsevier, 1994: 4751.
  • 45
    Maginn M, Cladwell M, Kelly JP, et al. The effect of 2-amino-3-phosphonopropionic acid (AP3) in the gerbil model of cerebral ischemia. Eur J Pharmacol 1995;282: 25962.
  • 46
    Lehmann J, Etienne P, Cheney DI, et al. NMDA receptors and their ion channels. In: FisherRS, CoyleJT, ed. Neurotransmitters and epilepsy. New York : Wiley-Liss, 1991: 14765.
  • 47
    Liljequist S, Cebers G, Kalda A. Effects of decahydroisoquinoline-3-carboxylic acid monohydrate: a novel AMPA receptor antagonist, on glutamate-induced Ca2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons. Biochem Pharmacol 1995;50: 176174.
  • 48
    Fisher RS. Animal models of the epilepsies. Brain Res Rev 1989;14: 24578.