• 1
    Agbanyo FR, Sixma JJ, De Groot PG, Languino LR, Plow EF. Thrombospondin–platelet interactions. Role of divalent cations, wall shear rate, and platelet membrane glycoproteins. J Clin Invest 1993; 92: 28896.
  • 2
    Hindriks G, Ijsseldijk MJ, Sonnenberg A, Sixma JJ, De Groot PG. Platelet adhesion to laminin: role of Ca2+ and Mg2+ ions, shear rate, and platelet membrane glycoproteins. Blood 1992; 79: 92835.
  • 3
    Nievelstein PF, D'Alessio PA, Sixma JJ. Fibronectin in platelet adhesion to human collagen types I and III. Use of nonfibrillar and fibrillar collagen in flowing blood studies. Arteriosclerosis 1988; 8: 2006.
  • 4
    Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 28997.
  • 5
    Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 65766.
  • 6
    Bonnefoy A, Harsfalvi J, Pfliegler G, Fauvel-Lafeve F, Legrand C. The subendothelium of the HMEC-1 cell line supports thrombus formation in the absence of von Willebrand factor and collagen types I, III and VI. Thromb Haemost 2001; 85: 5529.
  • 7
    Houdijk WP, Sakariassen KS, Nievelstein PF, Sixma JJ. Role of factor VIII–von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III. J Clin Invest 1985; 75: 53140.
  • 8
    Moroi M, Jung SM, Shinmyozu K, Tomiyama Y, Ordinas A, Diaz-Ricart M. Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion. Blood 1996; 88: 208192.
  • 9
    Turitto VT, Weiss HJ, Zimmerman TS, Sussman II. Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 1985; 65: 82331.
  • 10
    Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 95249.
  • 11
    Beumer S, IJsseldijk MJ, De Groot PG, Sixma JJ. Platelet adhesion to fibronectin in flow: dependence on surface concentration and shear rate, role of platelet membrane glycoproteins GP IIb/IIIa and VLA-5, and inhibition by heparin. Blood 1994; 84: 372433.
  • 12
    Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88: 152541.
  • 13
    Beumer S, Heijnen HF, IJsseldijk MJ, Orlando E, De Groot PG, Sixma JJ. Platelet adhesion to fibronectin in flow: the importance of von Willebrand factor and glycoprotein Ib. Blood 1995; 86: 345260.
  • 14
    Ruggeri ZM. Mechanisms initiating platelet thrombus formation. Thromb Haemost 1997; 78: 6116.
  • 15
    Alevriadou BR, Moake JL, Turner NA, Ruggeri ZM, Folie BJ, Phillips MD, Schreiber AB, Hrinda ME, McIntire LV. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 1993; 81: 126376.
  • 16
    Sakariassen KS, Nievelstein PF, Coller BS, Sixma JJ. The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium. Br J Haematol 1986; 63: 68191.
  • 17
    Fressinaud E, Baruch D, Girma JP, Sakariassen KS, Baumgartner HR, Meyer D. von Willebrand factor-mediated platelet adhesion to collagen involves platelet membrane glycoprotein IIb-IIIa as well as glycoprotein Ib. J Lab Clin Med 1988; 112: 5867.
  • 18
    Meyer D, Fressinaud E, Sakariassen KS, Baumgartner HR, Girma JP. Role of von Willebrand factor in platelet vessel–wall interactions. Ann N Y Acad Sci 1987; 509: 11830.
  • 19
    Sakariassen KS, Fressinaud E, Girma JP, Meyer D, Baumgartner HR. Role of platelet membrane glycoproteins and von Willebrand factor in adhesion of platelets to subendothelium and collagen. Ann NY Acad Sci 1987; 516: 5265.
  • 20
    Bolhuis PA, Sakariassen KS, Sander HJ, Bouma BN, Sixma JJ. Binding of factor VIII-von Willebrand factor to human arterial subendothelium precedes increased platelet adhesion and enhances platelet spreading. J Lab Clin Med 1981; 97: 56876.
  • 21
    Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate-dependent decrease of adhesion in von Willebrand's disease and the Bernard–Soulier syndrome. J Lab Clin Med 1978; 92: 75064.
  • 22
    Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101: 47986.
  • 23
    Mazzucato M, Pradella P, Cozzi MR, De Marco L, Ruggeri ZM. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibα mechanoreceptor. Blood 2002; 100: 2793800.
  • 24
    Ruggeri ZM, Dent JA, Saldivar E. Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 1999; 94: 1728.
  • 25
    Tsuji S, Sugimoto M, Miyata S, Kuwahara M, Kinoshita S, Yoshioka A. Real-time analysis of mural thrombus formation in various platelet aggregation disorders: distinct shear-dependent roles of platelet receptors and adhesive proteins under flow. Blood 1999; 94: 96875.
  • 26
    Kulkarni S, Dopheide SM, Yap CL, Ravanat C, Freund M, Mangin P, Heel KA, Street A, Harper IS, Lanza F, Jackson SP. A revised model of platelet aggregation. J Clin Invest 2000; 105: 78391.
  • 27
    Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 38592.
  • 28
    Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, Anbo H, Kawai Y, Watanabe K, Itagaki I, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest 1991; 87: 123440.
  • 29
    Weiss HJ, Hawiger J, Ruggeri ZM, Turitto VT, Thiagarajan P, Hoffmann T. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb–IIIa complex at high shear rate. J Clin Invest 1989; 83: 28897.
  • 30
    Ni H, Yuen PS, Papalia JM, Trevithick JE, Sakai T, Fassler R, Hynes RO, Wagner DD. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 2003; 100: 24159.
  • 31
    Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 95249.
  • 32
    Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8: 117581.
  • 33
    Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin αIIbβ3. Blood 2002; 99: 1518.
  • 34
    Yap CL, Hughan SC, Cranmer SL, Nesbitt WS, Rooney MM, Giuliano S, Kulkarni S, Dopheide SM, Yuan Y, Salem HH, Jackson SP. Synergistic adhesive interactions and signaling mechanisms operating between platelet glycoprotein Ib/IX and integrin αIIbβ3. Studies in human platelets and transfected Chinese hamster ovary cells. J Biol Chem 2000; 275: 4137788.
  • 35
    Kuwahara M, Sugimoto M, Tsuji S, Miyata S, Yoshioka A. Cytosolic calcium changes in a process of platelet adhesion and cohesion on a von Willebrand factor-coated surface under flow conditions. Blood 1999; 94: 114955.
  • 36
    Nesbitt WS, Kulkarni S, Giuliano S, Goncalves I, Dopheide SM, Yap CL, Harper IS, Salem HH, Jackson SP. Distinct glycoprotein Ib/V/IX and integrin αIIbβ3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 2002; 277: 296572.
  • 37
    Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI. von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 1991; 88: 156873.
  • 38
    Jackson SP, Schoenwaelder SM, Yuan Y, Rabinowitz I, Salem HH, Mitchell CA. Adhesion receptor activation of phosphatidylinositol 3-kinase. von Willebrand factor stimulates the cytoskeletal association and activation of phosphatidylinositol 3-kinase and pp60c-src in human platelets. J Biol Chem 1994; 269: 270939.
  • 39
    Asazuma N, Ozaki Y, Satoh K, Yatomi Y, Handa M, Fujimura Y, Miura S, Kume S. Glycoprotein Ib–von Willebrand factor interactions activate tyrosine kinases in human platelets. Blood 1997; 90: 478998.
  • 40
    Marshall SJ, Asazuma N, Best D, Wonerow P, Salmon G, Andrews RK, Watson SP. Glycoprotein IIb-IIIa-dependent aggregation by glycoprotein Ibα is reinforced by a Src family kinase inhibitor (PP1)-sensitive signalling pathway. Biochem J 2002; 361: 297305.
  • 41
    Razdan K, Hellums JD, Kroll MH. Shear-stress-induced von Willebrand factor binding to platelets causes the activation of tyrosine kinase(s). Biochem J 1994; 302: 6816.
  • 42
    Yuan Y, Kulkarni S, Ulsemer P, Cranmer SL, Yap CL, Nesbitt WS, Harper I, Mistry N, Dopheide SM, Hughan SC, Williamson D, De La Salle C, Salem HH, Lanza F, Jackson SP. The von Willebrand factor-glycoprotein Ib/V/IX interaction induces actin polymerization and cytoskeletal reorganization in rolling platelets and glycoprotein Ib/V/IX-transfected cells. J Biol Chem 1999; 274: 3624151.
  • 43
    Canobbio I, Bertoni A, Lova P, Paganini S, Hirsch E, Sinigaglia F, Balduini C, Torti M. Platelet activation by von Willebrand factor requires coordinated signaling through thromboxane A2 and Fcγ IIA receptor. J Biol Chem 2001; 276: 260229.
  • 44
    Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Rap1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves Fcγ II receptor-mediated protein tyrosine phosphorylation. J Biol Chem 1999; 274: 136907.
  • 45
    Falati S, Edmead CE, Poole AW. Glycoprotein Ib–V–IX, a receptor for von Willebrand factor, couples physically and functionally to the Fc receptor γ-chain, Fyn, and Lyn to activate human platelets. Blood 1999; 94: 164856.
  • 46
    Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib–IX–V complex. Thromb Haemost 2001; 86: 17888.
  • 47
    Wu Y, Suzuki-Inoue K, Satoh K, Asazuma N, Yatomi Y, Berndt MC, Ozaki Y. Role of Fc receptor γ-chain in platelet glycoprotein Ib-mediated signaling. Blood 2001; 97: 383645.
  • 48
    Sullam PM, Hyun WC, Szollosi J, Dong J, Foss WM, Lopez JA. Physical proximity and functional interplay of the glycoprotein Ib–IX–V complex and the Fc receptor Fcγ RIIA on the platelet plasma membrane. J Biol Chem 1998; 273: 53316.
  • 49
    Moritz MW, Reimers RC, Baker RK, Sutera SP, Joist JH. Role of cytoplasmic and releasable ADP in platelet aggregation induced by laminar shear stress. J Lab Clin Med 1983; 101: 53744.
  • 50
    Moake J, Turner NA, Stathopoulos NA, Nolasco L, Hellums JD. Shear-induced platelet aggregation can be mediated by VWF released from platelets, as well as by exogenous large or unusually large VWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 1988; 71: 136674.
  • 51
    Chow TW, Hellums JD, Moake JL, Kroll MH. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood 1992; 80: 11320.
  • 52
    Cunningham JG, Meyer SC, Fox JEB. The cytoplasmic domain of the α-subunit of glycoprotein (GP) Ib mediates attachment of the entire GP Ib–IX complex to the cytoskeleton and regulates von Willebrand factor-induced changes in cell morphology. J Biol Chem 1996; 271: 115817.
  • 53
    Andrews RK, Harris SJ, McNally T, Berndt MC. Binding of purified 14–3−3ζ signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib–IX–V complex. Biochemistry 1998; 37: 63847.
  • 54
    Feng S, Christodoulides N, Resendiz JC, Berndt MC, Kroll MH. Cytoplasmic domains of GpIbα and GpIbβ regulate 14–3−3ζ binding to GpIb/IX/V. Blood 2000; 95: 5517.
  • 55
    Munday AD, Berndt MC, Mitchell CA. Phosphoinositide 3-kinase forms a complex with platelet membrane glycoprotein Ib–IX–V complex and 14–3−3ζ. Blood 2000; 96: 57784.
  • 56
    Gu M, Xi X, Englund GD, Berndt MC, Du X. Analysis of the roles of 14–3−3 in the platelet glycoprotein Ib–IX-mediated activation of integrin αIIbβ3 using a reconstituted mammalian cell expression model. J Cell Biol 1999; 147: 108596.
  • 57
    Du X, Harris SJ, Tetaz TJ, Ginsberg MH, Berndt MC. Association of a phospholipase A2 (14-3-3: protein) with the platelet glycoprotein Ib–IX complex. J Biol Chem 1994; 269: 1828790.
  • 58
    Andrews RK, Munday AD, Mitchell CA, Berndt MC. Interaction of calmodulin with the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX–V complex. Blood 2001; 98: 6817.
  • 59
    Wu Y, Asazuma N, Satoh K, Yatomi Y, Takafuta T, Berndt MC, Ozaki Y. Interaction between von Willebrand factor and glycoprotein Ib activates Src kinase in human platelets: role of phosphoinositide 3-kinase. Blood DOI 10.1182/blood-2002-03-0806
  • 60
    Poole A, Gibbins JM, Turner M, Van Vugt MJ, Van De Winkel JG, Saito T, Tybulewicz VL, Watson SP. The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16: 233341.
  • 61
    Phillips DR, Nannizzi-Alaimo L, Prasad KS. β3 tyrosine phosphorylation in αIIbβ3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost 2001; 86: 24658.
  • 62
    Myung PS, Boerthe NJ, Koretzky GA. Adapter proteins in lymphocyte antigen-receptor signaling. Curr Opin Immunol 2000; 12: 25666.
  • 63
    Tomlinson MG, Lin J, Weiss A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol Today 2000; 21: 58491.
  • 64
    Woodside DG, Obergfell A, Leng L, Wilsbacher JL, Miranti CK, Brugge JS, Shattil SJ, Ginsberg MH. Activation of Syk protein tyrosine kinase through interaction with integrin β cytoplasmic domains. Curr Biol 2001; 11: 1799804.
  • 65
    Cowan KJ, Law DA, Phillips DR. Identification of shc as the primary protein binding to the tyrosine-phosphorylated β3 subunit of αIIbβ3 during outside-in integrin platelet signaling. J Biol Chem 2000; 275: 364239.
  • 66
    Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D, Mokhtari-Nejad R, Lindhout T, Heemskerk JW, Zirngibl H, Fassler R. Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J 2001; 20: 212030.
  • 67
    Watson SP. Collagen receptor signaling in platelets and megakaryocytes. Thromb Haemost 1999; 82: 36576.
  • 68
    Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost 2001; 86: 18997.
  • 69
    Watson SP, Asazuma N, Atkinson B, Berlanga O, Best D, Bobe R, Jarvis G, Marshall S, Snell D, Stafford M, Tulasne D, Wilde J, Wonerow P, Frampton J. The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost 2001; 86: 27688.
  • 70
    Pasquet JM, Bobe R, Gross B, Gratacap MP, Tomlinson MG, Payrastre B, Watson SP. A collagen-related peptide regulates phospholipase Cγ2 via phosphatidylinositol 3-kinase in human platelets. Biochem J 1999; 342: 1717.
  • 71
    Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, Watson SP, Lentz SR, Koretzky GA. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest 1999; 103: 1925.
  • 72
    Nieswandt B, Bergmeier W, Schulte V, Rackebrandt K, Gessner JE, Zirngibl H. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRγ chain. J Biol Chem 2000; 275: 239984002.
  • 73
    Nesbitt WS, Giuliano S, Kulkarni S, Dopheide SM, Harper IS, Jackson SP. Intercellular calcium communication drives thrombus growth. J Cell Biol 2003; 160: 115161.
  • 74
    Coughlin SR. Protease-activated receptors in vascular biology. Thromb Haemost 2001; 86: 298307.
  • 75
    Gachet C. ADP receptors of platelets and their inhibition. Thromb Haemost 2001; 86: 22232.
  • 76
    Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci USA 1999; 96: 110237.
  • 77
    Kroll MH, Schafer AI. Biochemical mechanisms of platelet activation. Blood 1989; 74: 118195.
  • 78
    Offermanns S, Laugwitz KL, Spicher K, Schultz G. G Proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 1994; 91: 5048.
  • 79
    Yang X, Sun L, Ghosh S, Rao AK. Human platelet signaling defect characterized by impaired production of inositol-1,4,5-triphosphate and phosphatidic acid and diminished Pleckstrin phosphorylation: evidence for defective phospholipase C activation. Blood 1996; 88: 167683.
  • 80
    Gabbeta J, Yang X, Kowalska MA, Sun L, Dhanasekaran N, Rao AK. Platelet signal transduction defect with Gα subunit dysfunction and diminished Gαq in a patient with abnormal platelet responses. Proc Natl Acad Sci USA 1997; 94: 87505.
  • 81
    Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001; 409: 2027.
  • 82
    Jen CJ, McIntire LV. Characteristics of shear-induced aggregation in whole blood. J Lab Clin Med 1984; 103: 11524.
  • 83
    Turner NA, Moake JL, McIntire LV. Blockade of adenosine diphosphate receptors P2Y (12) and P2Y (1) is required to inhibit platelet aggregation in whole blood under flow. Blood 2001; 98: 33405.
  • 84
    Remijn JA, Wu YP, Jeninga EH, IJsseldijk MJ, Van Willigen G, De Groot PG, Sixma JJ, Nurden AT, Nurden P. Role of ADP receptor P2Y (12) in platelet adhesion and thrombus formation in flowing blood. Arterioscler Thromb Vasc Biol 2002; 22: 68691.
  • 85
    Folie BJ, McIntire LV. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J 1989; 56: 112141.
  • 86
    Wagner WR, Hubbell JA. ADP receptor antagonists and converting enzyme systems reduce platelet deposition onto collagen. Thromb Haemost 1992; 67: 4617.
  • 87
    Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 1999; 144: 74554.
  • 88
    Raychowdhury MK, Yukawa M, Collins LJ, McGrail SH, Kent KC, Ware JA. Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem 1995; 270: 7011.
  • 89
    Hardwick RA, Hellums JD, Peterson DM, Moake JL, Olson JD. The effect of PGI2 and theophylline on the response of platelets subjected to shear stress. Blood 1981; 58: 67881.
  • 90
    Konstantopoulos K, Wu KK, Udden MM, Banez EI, Shattil SJ, Hellums JD. Flow cytometric studies of platelet responses to shear stress in whole blood. Biorheology 1995; 32: 7393.
  • 91
    Barstad RM, Orvim U, Hamers MJ, Tjonnfjord GE, Brosstad FR, Sakariassen KS. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow. Thromb Haemost 1996; 75: 82732.
  • 92
    Roald HE, Orvim U, Bakken IJ, Barstad RM, Kierulf P, Sakariassen KS. Modulation of thrombotic responses in moderately stenosed arteries by cigarette smoking and aspirin ingestion. Arterioscler Thromb 1994; 14: 61721.
  • 93
    Barstad RM, Roald HE, Cui Y, Turitto VT, Sakariassen KS. A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses. Arterioscler Thromb 1994; 14: 198491.
  • 94
    Maalej N, Folts JD. Increased shear stress overcomes the antithrombotic platelet inhibitory effect of aspirin in stenosed dog coronary arteries. Circulation 1996; 93: 12015.
  • 95
    Folts J. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 1991; 83 (Suppl. 6): IV314.
  • 96
    Aiken JW, Shebuski RJ, Miller OV, Gorman RR. Endogenous prostacyclin contributes to the efficacy of a thromboxane synthetase inhibitor for preventing coronary artery thrombosis. J Pharmacol Exp Ther 1981; 219: 299308.
  • 97
    Veen G, Meyer A, Verheugt FW, Werter CJ, De Swart H, Lie KI, Van Der Pol JM, Michels HR, Van Eenige MJ. Culprit lesion morphology and stenosis severity in the prediction of reocclusion after coronary thrombolysis: angiographic results of the APRICOT study. Antithrombotics in the prevention of reocclusion in coronary thrombolysis. J Am Coll Cardiol 1993; 22: 175562.
  • 98
    Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103: 87987.
  • 99
    Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 105768.
  • 100
    Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 1998; 95: 66426.
  • 101
    Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 6904.
  • 102
    Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, Coughlin SR. Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. J Biol Chem 2000; 275: 1972834.
  • 103
    Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR. Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem 2000; 275: 2521621.
  • 104
    Covic L, Gresser AL, Kuliopulos A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 2000; 39: 545867.
  • 105
    Ramakrishnan V, DeGuzman F, Bao M, Hall SW, Leung LL, Phillips DR. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc Natl Acad Sci USA 2001; 98: 18238.
  • 106
    Fressinaud E, Sakariassen KS, Rothschild C, Baumgartner HR, Meyer D. Shear rate-dependent impairment of thrombus growth on collagen in nonanticoagulated blood from patients with von Willebrand disease and hemophilia A. Blood 1992; 80: 98894.
  • 107
    Inauen W, Baumgartner HR, Bombeli T, Haeberli A, Straub PW. Dose- and shear rate-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arteriosclerosis 1990; 10: 60715.
  • 108
    Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 2001; 413: 748.
  • 109
    Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood 2002; 100: 32404.
  • 110
    Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 23115.
  • 111
    Gast A, Tschopp TB, Baumgartner HR. Thrombin plays a key role in late platelet thrombus growth and/or stability. Effect of a specific thrombin inhibitor on thrombogenesis induced by aortic subendothelium exposed to flowing rabbit blood. Arterioscler Thromb 1994; 14: 146674.