What is all that thrombin for?


Kenneth G. Mann, Department of Biochemistry, 89 Beaumont Avenue Given Building, Room C401, University of Vermont, College of Medicine, Burlington, Vermont 05405, USA.
Tel.: +1 802 656 0335; fax: +1 802 862 8229; e-mail: kmann@zoo.uvm.edu


Summary.  The hemostatic process initiated by the exposure of tissue factor to blood is a threshold limited reaction which occurs in two distinct phases. During an initiationphase, small amounts of factor (F)Xa, FIXa and thrombin are generated. The latter activates the procofactors FV and FVIII to the activated cofactors which together with their companion serine proteases form the intrinsic FX activator (FVIIIa-FIXa) and prothrombinase (FVa-FXa) which generate the bulk of FXa and thrombin during a propagation phase. The clotting process (fibrin formation) occurs at the inception of the propagation phase when only 5-10 nM thrombin has been produced. Consequently, the vast majority (greater than 95%) of thrombin is produced after clotting during the propagation phase of thrombin generation. The blood of individuals with either hemophilia A or hemophilia B has no ability to generate the intrinsic FXase, and hence is unable to support the propagation phase of the reaction. Since clot based assays conclude before the propagation phase they are not sensitive to hemophilia A and B. The inception and magnitude of the propagation phase of thrombin generation is influenced by genetic polymorphisms associated with thrombotic and hemorrhagic disease, by the natural abundance of pro- and anticoagulants in healthy individuals and by pharmacologic interventions which influence thrombotic pathology. Therefore, it is our suspicion that the performance of the entire process of thrombin generation from initiation through propagation and termination phases of the reaction are relevant with respect to both hemorrhagic and thrombotic pathology.