• 1
    Hunt LT, Dayhoff MO. A surprising new protein superfamily containing ovalbumin, antithrombin- III, and alpha 1-proteinase inhibitor. Biochem Biophys Res Commun 1980; 95 (2): 86471.
  • 2
    Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PGW, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276: 332936.
  • 3
    Irving JA, Steenbakkers PJ, Lesk AM, Op den Camp HJ, Pike RN, Whisstock JC. Serpins in prokaryotes. Mol Biol Evol 2002; 19: 188190.
  • 4
    Gettins PGW, Patston PA, Olson ST. Serpins: Structure, function and biology. Austin, TX: R.G Landes Co, 1996.
  • 5
    Bird PI. Serpins and regulation of cell death. Results Probl Cell Differ 1998; 24: 6389.
  • 6
    Elliott PR, Abrahams JP, Lomas DA. Wild-type alpha 1-antitrypsin is in the canonical inhibitory conformation. J Mol Biol 1998; 275: 41925.
  • 7
    Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Nature 1991; 353 (6344): 5768.
  • 8
    Mottonen J, Strand A, Symersky J, Sweet RM, Danley DE, Geoghegan KF, Gerard RD, Goldsmith EJ. Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355 (6357): 2703.
  • 9
    Zhou A, Huntington JA, Carrell RW. Formation of the antithrombin heterodimer in vivo and the onset of thrombosis. Blood 1999; 94: 338896.
  • 10
    Loebermann H, Tokuoka R, Deisenhofer J, Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol 1984; 177: 53157.
  • 11
    Li J, Wang Z, Canagarajah B, Jiang H, Kanost M, Goldsmith EJ. The structure of active serpin 1K from Manduca sexta. Structure Fold Des 1999; 7: 1039.
  • 12
    Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407 (6806): 9236.
  • 13
    Olson ST, Bock PE, Kvassman J, Shore JD, Lawrence DA, Ginsburg D, Bjork I. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. J Biol Chem 1995; 270: 3000717.
  • 14
    Stone SR, Le Bonniec BF. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease. J Mol Biol 1997; 265: 34462.
  • 15
    Lawrence DA, Olson ST, Muhammad S, Day DE, Kvassman JO, Ginsburg D, Shore JD. Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet A. J Biol Chem 2000; 275: 583944.
  • 16
    Olson ST, Swanson R, Day D, Verhamme I, Kvassman J, Shore JD. Resolution of Michaelis complex, acylation, and conformational change steps in the reactions of the serpin, plasminogen activator inhibitor-1, with tissue plasminogen activator and trypsin. Biochemistry 2001; 40: 1174256.
  • 17
    Huber R, Bode W. Structural basis of the activation and action of trypsin. Acc Chem Res 1978; 11: 11422.
  • 18
    Bock PE, Olson ST, Bjork I. Inactivation of thrombin by antithrombin is accompanied by inactivation of regulatory exosite I. J Biol Chem 1997; 272: 1983745.
  • 19
    Fredenburgh JC, Stafford AR, Weitz JI. Conformational changes in thrombin when complexed by serpins. J Biol Chem 2001; 276: 4482834.
  • 20
    Kaslik G, Patthy A, Balint M, Graf L. Trypsin complexed with alpha 1-proteinase inhibitor has an increased structural flexibility. FEBS Lett 1995; 370: 17983.
  • 21
    Stavridi ES, O'Malley K, Lukacs CM, Moore WT, Lambris JD, Christianson DW, Rubin H, Cooperman BS. Structural change in alpha-chymotrypsin induced by complexation with alpha 1-antichymotrypsin as seen by enhanced sensitivity to proteolysis. Biochemistry 1996; 35: 1060815.
  • 22
    Egelund R, Petersen TE, Andreasen PA. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism. Eur J Biochem 2001; 268: 67385.
  • 23
    Hoffman M, Pratt CW, Brown RL, Church FC. Heparin cofactor II-proteinase reaction products exhibit neutrophil chemoattractant activity. Blood 1989; 73: 16825.
  • 24
    Parmar JS, Mahadeva R, Reed BJ, Farahi N, Cadwallader KA, Keogan MT, Bilton D, Chilvers ER, Lomas DA. Polymers of alpha (1) – antitrypsin are chemotactic for human neutrophils: a new paradigm for the pathogenesis of emphysema. Am J Respir Cell Mol Biol 2002; 26: 72330.
  • 25
    Huntington JA, Carrell RW. The serpins: nature's molecular mousetraps. Sci Prog 1901; 84: 12536.
  • 26
    Gruber A, Cantwell AM, Di Cera E, Hanson SR. The thrombin mutant W215A/E217A shows safe and potent anticoagulant and antithrombotic effects in vivo. J Biol Chem 2002; 277: 275814.
  • 27
    Stubbs MT, Bode W. A player of many parts: the spotlight falls on thrombin's structure. Thromb Res 1993; 69: 158.
  • 28
    Myles T, Church FC, Whinna HC, Monard D, Stone SR. Role of thrombin anion-binding exosite-I in the formation of thrombin- serpin complexes. J Biol Chem 1998; 273: 312038.
  • 29
    Sheehan JP, Sadler JE. Molecular mapping of the heparin-binding exosite of thrombin. Proc Natl Acad Sci USA 1994; 91: 551822.
  • 30
    Tsiang M, Jain AK, Gibbs CS. Functional requirements for inhibition of thrombin by antithrombin III in the presence and absence of heparin. J Biol Chem 1997; 272: 120249.
  • 31
    Huntington JA, Esmon CT. The molecular basis of thrombin allostery revealed by a 1.8 Å structure of the "Slow" form. Structure 2003; 11: 46979.
  • 32
    Rezaie AR. Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by a template mechanism. Evidence that calcium alleviates Gla domain antagonism of heparin binding to factor Xa. J Biol Chem 1998; 273: 168247.
  • 33
    Rezaie AR, Olson ST. Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by promoting the assembly of an intermediate heparin-antithrombin-factor Xa bridging complex. Demonstration by rapid kinetics studies. Biochemistry 2000; 39: 1208390.
  • 34
    Rezaie AR. Identification of basic residues in the heparin-binding exosite of factor Xa critical for heparin and factor Va binding. J Biol Chem 2000; 275: 33207.
  • 35
    Rezaie AR. Heparin-binding exosite of factor Xa. Trends Cardiovasc Med 2000; 10: 3338.
  • 36
    Hirsh J. Blood tests for the diagnosis of venous and arterial thrombosis. Blood 1981; 57: 18.
  • 37
    Kojima T. Targeted gene disruption of natural anticoagulant proteins in mice. Int J Hematol 2002; 76 (Suppl. 2): 369.
  • 38
    Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2001; 57: 159206.
  • 39
    Lindahl U, Thunberg L, Backstrom G, Riesenfeld J. The antithrombin-binding sequence of heparin. Biochem Soc Trans 1981; 9: 49951.
  • 40
    Casu B, Oreste P, Torri G, Zoppetti G, Choay J, Lormeau JC, Petitou M, Sinay P. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear-magnetic-resonance studies. Biochem J 1981; 197: 599609.
  • 41
    Huber R, Carrell RW. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 895166.
  • 42
    Arocas V, Bock SC, Olson ST, Bjork I. The role of Arg46 and Arg47 of antithrombin in heparin binding. Biochemistry 1999; 38: 10196204.
  • 43
    Arocas V, Bock SC, Raja S, Olson ST, Bjork I. Lysine 114 of antithrombin is of crucial importance for the affinity and kinetics of heparin pentasaccharide binding. J Biol Chem 2001; 276: 4380917.
  • 44
    Desai U, Swanson R, Bock SC, Bjork I, Olson ST. Role of arginine 129 in heparin binding and activation of antithrombin. J Biol Chem 2000; 275: 1897684.
  • 45
    Schnedin-Weiss S, Desai UR, Bock SC, Gettins PGW, Olson ST, Bjork I. Importance of lysine 125 for heparin binding and activation of antithrombin. Biochemistry 2002; 41: 477988.
  • 46
    Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 1997; 94: 146838.
  • 47
    Olson ST, Srinivasan KR, Bjork I, Shore JD. Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J Biol Chem 1981; 256: 110739.
  • 48
    Desai UR, Petitou M, Bjork I, Olson ST. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem 1998; 273: 747887.
  • 49
    Carrell RW, Stein PE, Fermi G, Wardell MR. Biological implications of a 3Å structure of dimeric antithrombin. Structure 1994; 2: 25770.
  • 50
    Schreuder HA, De Boer B, Dijkema R, Mulders J, Theunissen HJ, Grootenhuis PD, Hol WG. The intact and cleaved human antithrombin III complex as a model for serpin–proteinase interactions. Nat Struct Biol 1994; 1: 4854.
  • 51
    Meagher JL, Olson ST, Gettins PG. Critical role of the linker region between helix D and strand 2A in heparin activation of antithrombin. J Biol Chem 2000; 275: 2698704.
  • 52
    Belzar KJ, Zhou A, Carrell RW, Gettins PG, Huntington JA, Helix D elongation and allosteric activation of antithrombin. J Biol Chem 2002; 277: 85518.
  • 53
    Mushunje A, Zhou A, Huntington JA, Conard J, Carrell RW. Antithrombin ‘DREUX’ (Lys 114Glu): a variant with complete loss of heparin affinity. Thromb Haemost 2002; 88: 43643.
  • 54
    Turk B, Brieditis I, Bock SC, Olson ST, Bjork I. The oligosaccharide side chain on Asn-135 of alpha-antithrombin, absent in beta-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change. Biochemistry 1997; 36: 668291.
  • 55
    Olson ST, Bjork I. Role of protein conformational changes, surface approximation and protein cofactors in heparin-accelerated antithrombin-proteinase reactions. Adv Exp Med Biol 1992; 313: 15565.
  • 56
    Tollefsen DM. Heparin cofactor II. Adv Exp Med Biol 1997; 425: 3544.
  • 57
    Andersson TR, Larsen ML, Handeland GF, Abildgaard U. Heparin cofactor II activity in plasma: application of an automated assay method to the study of a normal adult population. Scand J Haematol 1986; 36: 96102.
  • 58
    Bertina RM, Van DL I, Engesser L, Muller HP, Brommer EJ. Hereditary heparin cofactor II deficiency and the risk of development of thrombosis. Thromb Haemost 1987; 57: 196200.
  • 59
    Griffith MJ, Carraway T, White GC, Dombrose FA. Heparin cofactor activities in a family with hereditary antithrombin III deficiency: evidence for a second heparin cofactor in human plasma. Blood 1983; 61: 1118.
  • 60
    Fernandez F, Van Ryn J, Ofosu FA, Hirsh J, Buchanan MR. The haemorrhagic and antithrombotic effects of dermatan sulphate. Br J Haematol 1986; 64: 30917.
  • 61
    Carrie D, Caranobe C, Gabaig AM, Larroche M, Boneu B. Effects of heparin, dermatan sulfate and of their association on the inhibition of venous thrombosis growth in the rabbit. Thromb Haemost 1992; 68: 63741.
  • 62
    Liaw PC, Becker DL, Stafford AR, Fredenburgh JC, Weitz JI. Molecular basis for the susceptibility of fibrin-bound thrombin to inactivation by heparin cofactor ii in the presence of dermatan sulfate but not heparin. J Biol Chem 2001; 276: 2095965.
  • 63
    McGuire EA, Tollefsen DM. Activation of heparin cofactor II by fibroblasts and vascular smooth muscle cells. J Biol Chem 1987; 262: 16975.
  • 64
    Whinna HC, Choi HU, Rosenberg LC, Church FC. Interaction of heparin cofactor II with biglycan and decorin. J Biol Chem 1993; 268: 39204.
  • 65
    Church FC, Pratt CW, Hoffman M. Leukocyte chemoattractant peptides from the serpin heparin cofactor II. J Biol Chem 1991; 266: 7049.
  • 66
    Griffith MJ, Noyes CM, Tyndall JA, Church FC. Structural evidence for leucine at the reactive site of heparin cofactor II. Biochemistry 1985; 24: 677782.
  • 67
    Church FC, Noyes CM, Griffith MJ. Inhibition of chymotrypsin by heparin cofactor II. Proc Natl Acad Sci USA 1985; 82: 64314.
  • 68
    Pratt CW, Tobin RB, Church FC. Interaction of heparin cofactor II with neutrophil elastase and cathepsin G. J Biol Chem 1990; 265: 60927.
  • 69
    Van DV, Tollefsen DM. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of alpha-thrombin in the presence of glycosaminoglycans. J Biol Chem 1991; 266: 2022331.
  • 70
    Tollefsen DM, Pestka CA, Monafo WJ. Activation of heparin cofactor II by dermatan sulfate. J Biol Chem 1983; 258: 67136.
  • 71
    Maimone MM, Tollefsen DM. Activation of heparin cofactor II by heparin oligosaccharides. Biochem Biophys Res Commun 1988; 152: 105661.
  • 72
    Maimone MM, Tollefsen DM. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J Biol Chem 1991; 266: 14830.
  • 73
    Blinder MA, Andersson TR, Abildgaard U, Tollefsen DM. Heparin cofactor II Oslo. Mutation of Arg-189 to His decreases the affinity for dermatan sulfate. J Biol Chem 1989; 264: 512833.
  • 74
    Whinna HC, Blinder MA, Szewczyk M, Tollefsen DM, Church FC. Role of lysine 173 in heparin binding to heparin cofactor II. J Biol Chem 1991; 266: 812935.
  • 75
    Blinder MA, Tollefsen DM. Site-directed mutagenesis of arginine 103 and lysine 185 in the proposed glycosaminoglycan-binding site of heparin cofactor II. J Biol Chem 1990; 265: 28691.
  • 76
    Hayakawa Y, Hirashima Y, Kurimoto M, Hayashi N, Hamada H, Kuwayama N, Endo S. Contribution of basic residues of the A helix of heparin cofactor II to heparin- or dermatan sulfate-mediated thrombin inhibition. FEBS Lett 2002; 522: 14750.
  • 77
    Sheehan JP, Tollefsen DM, Sadler JE. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans. J Biol Chem 1994; 269: 3274751.
  • 78
    Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci USA 2002; 99: 1107984.
  • 79
    Sheffield WP, Blajchman MA. Deletion mutagenesis of heparin cofactor II. defining the minimum size of a thrombin inhibiting serpin. FEBS Lett 1995; 365: 18992.
  • 80
    Mellet P, Bieth JG. Evidence that translocation of the proteinase precedes its acylation in the serpin inhibition pathway. J Biol Chem 2000; 275: 1078895.
  • 81
    Peterson FC, Gordon NC, Gettins PG. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H−15N HSQC NMR as a sensitive nonperturbing monitor of conformation. Biochemistry 2000; 39: 1188492.
  • 82
    Ye S, Chech AL, Belmares R, Bergstrom RC, Tong Y, Corey DR, Kanost MR, Goldsmith EJ. The structure of a Michaelis serpin-protease complex. Nat Struct Biol 2001; 8: 97983.
  • 83
    Whisstock JC, Pike RN, Jin L, Skinner R, Pei XY, Carrell RW, Lesk AM. Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparindagger. J Mol Biol 2000; 301: 1287305.
  • 84
    Manithody C, Yang L, Rezaie AR. Role of basic residues of the autolysis loop in the catalytic function of factor Xa. Biochemistry 2002; 41: 67808.
  • 85
    Quinsey NS, Whisstock JC, Le Bonniec B, Louvain V, Bottomley SP, Pike RN. Molecular determinants of the mechanism underlying acceleration of the interaction between antithrombin and factor Xa by heparin pentasaccharide. J Biol Chem 2002; 277: 159718.
  • 86
    Duchaussoy P, Jaurand G, Driguez PA, Lederman I, Ceccato ML, Gourvenec F, Strassel JM, Sizun P, Petitou M, Herbert JM. Assessment through chemical synthesis of the size of the heparin sequence involved in thrombin inhibition. Carbohydr Res 1999; 317: 8599.
  • 87
    Rezaie AR. Partial activation of antithrombin without heparin through deletion of a unique sequence on the reactive site loop of the serpin. J Biol Chem 2002; 277: 12359.
  • 88
    Huntington JA, Kjellberg M, Stenflo J. Crystal structure of protein C inhibitor provides insights into hormone binding and heparin activation. Structure 2003; 11: 20515.
  • 89
    Kazama Y, Niwa M, Yamagishi R, Takahashi K, Sakuragawa N, Koide T. Specificity of sulfated polysaccharides to accelerate the inhibition of activated protein C by protein C inhibitor. Thromb Res 1987; 48: 17985.
  • 90
    Friedrich U, Blom AM, Dahlback B, Villoutreix BO. Structural and energetic characteristics of the heparin-binding site in antithrombotic protein C. J Biol Chem 2001; 276: 241228.
  • 91
    Shirk RA, Elisen MG, Meijers JC, Church FC. Role of the H helix in heparin binding to protein C inhibitor. J Biol Chem 1994; 269: 286905.
  • 92
    Aznar J, Espana F, Estelles A, Royo M. Heparin stimulation of the inhibition of activated protein C and other enzymes by human protein C inhibitor – influence of the molecular weightof heparin and ionic strength. Thromb Haemost 1996; 76: 9838.