SEARCH

SEARCH BY CITATION

References

  • 1
    Bumgardner GL, Heininger M, Li J et al. A functional model of hepatocyte transplantation for in vivo immunologic studies. Transplantation 1998; 65: 5361.
  • 2
    Bumgardner GL, Li J, Heininger M, Ferguson RM, Orosz CG. In vivo immunogenicity of purified allogeneic hepatocytes in a murine hepatocyte transplant model. Transplantation 1998; 65: 4752.
  • 3
    Bumgardner GL, Li J, Prologo JD, Heininger M, Orosz CG. Patterns of immune responses evoked by allogeneic hepatocytes. I. Evidence for independent co-dominant roles for CD4+ and CD8+ T-cell responses in acute rejection. Transplantation 1999; 68: 555562.
  • 4
    Bumgardner GL, Gao D, Li J, Baskin J, Heininger M, Orosz CG. Rejection responses to allogeneic hepatocytes by reconstituted SCID mice, CD4 KO, and CD8 KO mice. Transplantation 2000; 70: 17711780.
  • 5
    Gao D, Li J, Orosz C, Bumgardner G. Different costimulation signals used by CD4+ and CD8+ cells that independently initiate rejection of allogeneic hepatocytes in mice. Hepatology 2000; 32: 10181028.
  • 6
    Bishop DK, Wood SC, Eichwald EJ, Orosz CG. Immunobiology of allograft rejection in the absence of IFN-gamma: CD8+ effector cells develop independently of CD4+ cells and CD40–CD40 ligand interactions. J Immunol 2001; 166: 32483255.
  • 7
    Jones ND, Van'Maurik A, Hara M et al. CD40-CD40 ligand-independent activation of CD8+ T cells can trigger allograft rejection. J Immunol 2000; 165: 11111118.
  • 8
    Trambley J, Bingaman AW, Lin A et al. Asialo GM1+ CD8+ T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 1999; 104: 1715.
  • 9
    Newell KA, He G, Guo Z et al. Blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD4+ but not CD8+ T cells. J Immunol 1999; 163: 23582362.
  • 10
    He G, Hart J, Kim OS et al. The role of CD8 and CD4 T cells in intestinal allograft rejection: a comparison of monoclonal antibody-treated and knockout mice. Transplantation 1999; 67: 131137.
  • 11
    Guo Z, Meng L, Kim O et al. CD8 T cell-mediated rejection of intestinal allografts is resistant to inhibition of the CD40/CD154 costimulatory pathway. Transplantation 2001; 71: 13511354.
  • 12
    Liu X, Bai XF, Wen J et al. B7H costimulates clonal expansion of, and cognate destruction of tumor cells by, CD8+ T lymphocytes in vivo. J Exp Med 2001; 194: 13391348.
  • 13
    Niimi M, Pearson TC, Larsen CP et al. The role of the CD40 pathway in alloantigen-induced hyporesponsiveness in vivo. J Immunol 1998; 161: 53315337.
  • 14
    Ozkaynak E, Gao W, Shemmeri N et al. Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat Immunol 2001; 2: 591596.
  • 15
    Shuford W, Klussman K, Tritchler D et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 1997; 186: 4755.
  • 16
    DeBenedette MA, Wen T, Bachmann MF et al. Analysis of 4–1BB ligand (4–1BBL)-deficient mice and of mice lacking both 4–1BBL and CD28 reveals a role for 4–1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol 1999; 163: 48334841.
  • 17
    Tan JT, Whitmire JK, Ahmed R, Pearson TC, Larsen CP. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol 1999; 163: 48594868.
  • 18
    Cannons J, Lau P, Ghumman B et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 2001; 167: 13131324.
  • 19
    Wen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 2002; 168: 48974906.
  • 20
    Takahashi C, Mittler RS, Vella AT. Differential clonal expansion of CD4 and CD8 T cells in response to 4–1BB ligation: contribution of 4–1BB during inflammatory responses. Immunol Lett 2001; 76: 183191.
  • 21
    De Smedt T, Smith J, Baum P, Fanslow W, Butz E, Maliszewski C. Ox40 costimulation enhances the development of T cell responses induced by dendritic cells in vivo. J Immunol 2002; 168: 661670.
  • 22
    Wang HC, Klein JR. Multiple levels of activation of murine CD8+ intraepithelial lymphocytes defined by OX40 (CD134) expression: effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. J Immunol 2001; 167: 67176723.
  • 23
    Tamada K, Ni J, Zhu G et al. Cutting edge: selective impairment of CD8+ T cell function in mice lacking the TNF superfamily member LIGHT. J Immunol 2002; 168: 48324835.
  • 24
    Guo Z, Wang J, Meng L et al. Cutting edge: membrane lymphotoxin regulates CD8+ T cell-mediated intestinal allograft rejection. J Immunol 2001; 167: 47964800.
  • 25
    Wallin JJ, Liang L, Bakardjiev A, Sha WC. Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J Immunol 2001; 167: 132139.
  • 26
    Kurzinger K, Reynolds T, Germain RN, Davignon D, Martz E, Springer TA. A novel lymphocyte function-associated antigen (LFA-1). cellular distribution, quantitative expression, and structure. J Immunol 1981; 127: 596602.
  • 27
    Krensky AM, Sanchez-Madrid F, Robbins E, Nagy JA, Springer TA, Burakoff SJ. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL–target interactions. J Immunol 1983; 131: 611616.
  • 28
    Martz E, Davignon D, Kurzinger K, Springer TA. The molecular basis for cytolytic T lymphocyte function: analysis with blocking monoclonal antibodies. Adv Exp Med Biol 1982; 146: 447468.
  • 29
    Dustin ML, Shaw AS. Costimulation: building an immunological synapse. Science 1999; 283 (5402): 649650.
  • 30
    Deeths MJ, Kedl RM, Mescher MF. CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol 1999; 163: 102110.
  • 31
    Ni HT, Deeths MJ, Li W, Mueller DL, Mescher MF. Signaling pathways activated by LFA-1 dependent costimulation. J Immunol 1999; 162: 51835189.
  • 32
    Binnerts ME, Van Kooyk Y, Simmons DL, Figdor CG. Distinct binding of T lymphocytes to ICAM-1-2 or -3 upon activation of LFA-1. Eur J Immunol 1994; 24: 21552160.
  • 33
    Abraham C, Griffith J, Miller J. The dependence for leukocyte function-associated antigen-1/ICAM–1 interactions in T cell activation cannot be overcome by expression of high density TCR ligand. J Immunol 1999; 162: 43994405.
  • 34
    Salomon B, Bluestone JA. LFA–1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J Immunol 1998; 161: 51385142.
  • 35
    Shier P, Ngo K, Fung-Leung W-P. Defective CD8+ T cell activation and cytolytic function in the absence of LFA-1 cannot be restored by increased TCR signaling. J Immunol 1999; 163: 48264832.
  • 36
    Chen T, Goldstein JS, O'Boyle K, Whitman MC, Brunswick M, Kozlowski S. ICAM-1 co-stimulation has differential effects on the activation of CD4+ and CD8+ T cells. Eur J Immunol 1999; 29: 809814.
  • 37
    Deeths MJ, Mescher MF. ICAM-1 and B7–1 provide similar but distinct costimulation for CD8+ T cells while CD4+ T cells are poorly costimulated by ICAM-1. Eur J Immunol 1999; 29: 4553.
  • 38
    Nakakura EK, Shorthouse RA, Zheng B, McCabe SM, Jardieu PM, Morris RE. Long-term survival of solid organ allografts by brief anti-lymphocyte function-associated antigen-1 monoclonal antibody monotherapy. Transplantation 1996; 62: 547552.
  • 39
    Isobe M, Suzuki J, Yamazaki S, Horie S, Okubo Y, Sekiguchi M. Assessment of tolerance induction to cardiac allograft by anti-ICAM-1 and anti-LFA-1 monoclonal antibodies. J Heart Lung Transplant 1997; 16: 11491156.
  • 40
    Nicolls MR, Coulombe M, Yang H, Bolwerk A, Gill RG. Anti-LFA-1 therapy induces long-term islet allograft acceptance in the absence of IFN-gamma or IL-4. J Immunol 2000; 164: 36273634.
  • 41
    Malm H, Corbascio M, Osterholm C et al. 4-1BB induces long-term graft survival of allogeneic skin grafts and totally inhibits T-cell proliferation in LFA-1-deficient mice. Transplantation 2002; 73: 293297.
  • 42
    Bumgardner GL, Li J, Apte S, Heininger M, Frankel WL. Effect of tumor necrosis factor à and intercellular adhesion molecule-1 expression on immunogenicity of murine liver cells in mice. Hepatology 1998; 28: 466474.
  • 43
    Seglen PO. Preparation of rat liver parenchymal cells: enzymatic requirements for tissue dispersion. Exp Cell Res 1973; 82: 391398.
  • 44
    Seglen PO. Preparation of isolated rat liver cells. Meth Cell Biol 1976; 13: 3083.
  • 45
    Nicolls MR, Coulombe M, Beilke J, Gelhaus HC, Gill RG. CD4-dependent generation of dominant transplantation tolerance induced by simultaneous perturbation of CD154 and LFA-1 pathways. J Immunol 2002; 169: 48314839.
  • 46
    Andrew DP, Spellberg JP, Takimoto H, Schmits R, Mak TW, Zukowski MM. Transendothelial migration and trafficking of leukocytes in LFA-1-deficient mice. Eur J Immunol 1998; 28: 19591969.
  • 47
    Norris S, Collins C, Doherty DG et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. Hepatology 1998; 28: 8490.
  • 48
    Moretto M, Durell B, Schwartzman JD, Khan IA. Gamma delta T cell-deficient mice have a down-regulated CD8+ T cell immune response against Encephalitozoon cuniculi infection. J Immunol 2001; 166: 73897397.
  • 49
    Schramm R, Schaefer T, Menger MD, Thorlacius H. Acute mast cell-dependent neutrophil recruitment in the skin is mediated by KC and LFA-1: inhibitory mechanisms of dexamethasone. J Leukoc Biol 2002; 72: 11221132.
  • 50
    Henderson RB, Lim LH, Tessier PA et al. The use of lymphocyte function-associated antigen (LFA)-1-deficient mice to determine the role of LFA-1, Mac-1, and alpha4 integrin in the inflammatory response of neutrophils. J Exp Med 2001; 194: 219226.
  • 51
    Ding ZM, Babensee JE, Simon SI et al. Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J Immunol 1999; 163: 50295038.
  • 52
    Morita K, Miura M, Paolone DR et al. Early chemokine cascades in murine cardiac grafts regulate T cell recruitment and progression of acute allograft rejection. J Immunol 2001; 167: 29792984.
  • 53
    Ragazzo JL, Ozaki ME, Karlsson L, Peterson PA, Webb SR. Costimulation via lymphocyte function-associated antigen 1 in the absence of CD28 ligation promotes anergy of naive CD4+ T cells. Proc Natl Acad Sci USA 2001; 98: 241246.