Effect of maternal cholestasis on bile acid transfer across the rat placenta–maternal liver tandem



Cholestasis of pregnancy induces alterations in bile acid transport by human trophoblast plasma membrane (TPM) vesicles. We investigated whether maternal cholestasis affects the overall ability of the rat placenta to carry out vectorial bile acid transfer from the fetus to the mother. Complete obstructive cholestasis (OCP) was maintained during the last week of pregnancy and released at term (day 21), before experiments were performed. In situ single-pass perfusion of one placenta per rat with 250 nmol [14C]glycocholic acid (GC) revealed an impaired uptake in OCP rats (2.28 vs. 5.53 nmol in control rats). Approximately 100% of GC taken up by control placentas was secreted in maternal bile over 120 minutes (5.38 nmol), whereas this was only 61% (1.40 nmol) of the GC taken up by OCP placentas. When 5 nmol GC was administered through the jugular vein no significant difference between both groups in total GC bile output was found. The efficiency (Vmax /KM ) of adenosine triphosphate (ATP)-dependent GC transport by vesicles from the maternal side of TPM was decreased (−41%) in OCP. Moreover, histological examination of the placentas suggested a reduction in the amount of functional trophoblast in the OCP group. This was consistent with a lower antipyrine diffusion across the placenta in these animals. In sum, our results indicate that maternal cholestasis affects the ability of the placenta to efficiently carry out bile acid transfer from fetal to maternal blood. Changes in both the structure and the functionality of the chorionic tissue may account for this impairment.