Beneficial effects of silymarin on estrogen-induced cholestasis in the rat: A study in vivo and in isolated hepatocyte couplets

Authors

  • Fernando A. Crocenzi,

    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    Search for more papers by this author
  • Enrique J. Sánchez Pozzi,

    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    Search for more papers by this author
  • José M. Pellegrino,

    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    Search for more papers by this author
  • Cristín O. Favre,

    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    Search for more papers by this author
  • Emilio A. Rodríguez Garay,

    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    Search for more papers by this author
  • Aldo D. Mottino,

    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    Search for more papers by this author
  • Roger Coleman,

    1. School of Biosciences—Biochemistry. The University of Birmingham. Birmingham, UK.
    Search for more papers by this author
  • Marcelo G. Roma

    Corresponding author
    1. Instituto de Fisiología Experimental (IFISE)—Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
    • Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas. Suipacha 570, 2000 – Rosario, Argentina. fax: (54) 341-4399473
    Search for more papers by this author

Abstract

The effect of silymarin (SIL) on 17α-ethynylestradiol (EE)-induced cholestasis was evaluated in rats. EE (5 mg/kg, subcutaneously, daily, for 5 days) decreased both the bile-salt–dependent and the bile-salt–independent fractions of the bile flow. The decrease in the former was associated to a reduction in the bile salt pool size (−58%), and this effect was completely prevented by SIL. This compound also counteracted the inhibitory effect induced by EE on HCO3- but not glutathione output, 2 major determinants of the bile-salt–independent bile flow. EE decreased the secretory rate maximum (SRM) of tauroursodeoxycholate, (−71%) and bromosulfophthalein (BSP; −60%), as well as the expression of the BSP canalicular carrier, mrp2; SIL failed to increase mrp2 expression, and had only a marginal beneficial effect on both tauroursodeoxycholate and BSP SRM values. However, the two-compartment model-based kinetic constant for BSP canalicular transfer was significantly improved by SIL (+262%). SIL decreased rather than increased CYP3A4, the cytochrome P450 isoenzyme involved in the oxidative metabolism of EE, and had no inhibitory effect on the UDP-glucuronosyltrasferase isoforms involved in the formation of its 17β-glucuronidated, more cholestatic metabolite. Pretreatment of isolated rat hepatocyte couplets with silibinin, the major, active component of SIL, counteracted the estradiol 17β-glucuronide-induced decrease in the percentage of couplets secreting apically the fluorescent bile acid analogue, cholyl-lysyl-fluorescein. These results show that SIL protects against EE-induced cholestasis by normalizing mainly the decrease in the bile salt pool size and HCO3- output, and probably by counteracting the cholestatic effect of its cholestatic, glucuronidated metabolite.

Ancillary