Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro

Authors


Abstract

For gene therapy of hepatocellular carcinoma (HCC), the Escherichia coli purine nucleoside phosphorylase (PNP)/fludarabine suicide gene system may be more useful than the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system as a result of a stronger bystander effect. To analyze the molecular mechanisms involved in PNP/fludarabine-mediated cell death in human HCC cells in comparison with HSV-tk/GCV, we transduced human HCC cells of the cell lines, HepG2 and Hep3B, with PNP or HSV-tk using adenoviral vectors, followed by prodrug incubation. Both systems predominantly induced apoptosis in HepG2 and Hep3B cells. PNP/fludarabine induced strong p53 accumulation and a more rapid onset of apoptosis in p53-positive HepG2 cells as compared with p53-negative Hep3B cells, but efficiency of tumor cell killing was similar in both cell lines. In contrast, HSV-tk/GCV–induced apoptosis was reduced in p53-negative Hep3B cells as compared with p53-positive HepG2 cells. HSV-tk/GCV, but not PNP/fludarabine, caused up-regulation of Fas in p53-positive HepG2 cells and of Fas ligand (FasL) in both HCC cell lines. These results demonstrate cell line–specific differences in response to treatment with PNP/fludarabine and HSV-tk/GCV, respectively, and indicate that PNP/fludarabine may be superior to HSV-tk/GCV for the treatment of human HCC because of its independence from p53 and the Fas/FasL system. (HEPATOLOGY 2001;34:511-518.)

Ancillary