CD8+ T-cell interaction with HCV replicon cells: Evidence for both cytokine- and cell-mediated antiviral activity



The interaction between the host immune response and infected hepatocytes plays a central role in the pathogenesis of hepatitis C virus (HCV). The lack of a suitable animal or in vitro model has hindered our understanding of the host T-cell/HCV interaction. Our aim was to develop an in vitro model to study the mechanisms of HCV-specific T-cell-mediated antiviral and cytolytic function. The HCV replicon was HLA typed and lymphocytes were obtained from an HLA class I-matched subject. CD8+ T cells were expanded with 2 HCV-specific/HLA-restricted peptides for NS3. Lymphocyte preparations were cocultured with HCV replicon (FCA1) and control (Huh7) cells labeled with 51Cr. After a 48-hour incubation, the cells were harvested for RNA extraction. Standard blocking assays were performed in the presence of anti-interferon gamma (IFN-γ), anti-tumor necrosis factor α (TNF-α), and anti-FasL. Cytolytic activity was measured by 51Cr release. HCV replicon cells express homozygous HLA-A11 alleles and present HCV nonstructural proteins. HCV-specific expansion of CD8+ cells led to a 10-fold decrease in HCV replication by Northern blot analysis and 21% specific lysis of FCA1 cells (compared with 2% of control Huh7 cells). Twenty percent of this antiviral activity was independent of T-cell binding, suggesting cytokine-mediated antiviral activity. The CD8+ antiviral effect was markedly reduced by blocking either IFN-γ or FasL but was unaffected by blocking TNF-α. In conclusion, HCV-specific CD8+ cells inhibit viral RNA replication by cytokine-mediated and direct cytolytic effects. This T-cell/HCV subgenomic replicon system represents a model for the investigation of CD8 cell interaction with HCV-infected hepatocytes.