SEARCH

SEARCH BY CITATION

References

  • 1
    Culotta VC, Gitlin JD. Disorders of copper transport. In: ScriverCR, BeaudetAL, SlyWS, ValleD, eds. The Molecular and Metabolic Basis of Inherited Disease. New York: McGraw-Hill, 2001:31053126.
  • 2
    Gitlin JD. Wilson's Disease. In: ZakimD, BoyerT, eds. Hepatology. Philadelphia: W. B. Saunders, 2002:12731287.
  • 3
    Olivares M, Uauy R. Copper as an essential nutrient. Am J Clin Nutrit 1996; 63(Suppl):846S852S.
  • 4
    Sternlieb I, Scheinberg IH. Radiocopper in diagnosing liver disease. Semin Nucl Med 1972; 2:176188.
  • 5
    Hellman N, Gitlin JD. Ceruloplasmin metabolism and function. Ann Rev Nutr 2002; 22:439458.
  • 6
    Gollan JL, Gollan TJ. Wilson disease in 1998: genetic, diagnostic and therapeutic aspects. J Hepatol 1998; 28:2836.
  • 7
    Arrese M, Ananthananarayanan M, Suchy FJ. Hepatobiliary transport: molecular mechanisms of development and cholestasis. Ped Res 1998; 44:141147.
  • 8
    Loudianos G, Gitlin JD. Wilson's disease. Semin Liver Dis 2000; 20:353364.
  • 9
    Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, et al. Molecular characterization of a copper tarnsport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 1994; 76:393402.
  • 10
    Zhou B, Gitschier J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A 1997; 94:74817486.
  • 11
    Kuo YM, Zhou B, Cosco D, Gitschier J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 2001; 98:68366841.
  • 12
    Lee J, Prohaska JR, Thiele DJ. Essential role of mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 2001; 98:68426847.
  • 13
    Lee J, Pena MM, Nose Y, Thiele DJ. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 2001; 277:43804387.
  • 14
    Klomp AE, Tops BB, Van Denberg IE, Berger R, Klomp LW. Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 2002; 364:497505.
  • 15
    Puig S, Lee J, Lau M, Thiele DJ. Biochemical and genetic analyses of yeast and human high-affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 2002; 277:2398123984.
  • 16
    Klomp AE, Juijn JA, Van Der Gun LT, Van Den Berg IE, Berger R, Klomp LW. The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem J 2003; 370: 881889.
  • 17
    Petris MJ, Smith K, Lee J, Thiele DJ. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 2003; 278:96399646.
  • 18
    Lee J, Petris MJ, Thiele DJ. Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system. J Biol Chem 2002; 277:4025340259.
  • 19
    Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002; 99:1429814302.
  • 20
    Palmiter RD. The elusive function of metallothioneins. Proc Natl Acad Sci U S A 1998; 95:84288430.
  • 21
    Kelley EJ, Palmiter RJ. A murine model of Menkes disease reveals a physiological function of metallothionein. Nat Genet 1996; 13:219222.
  • 22
    Rae T, Schmidt P, Pufahl R, Culotta VC, O'Halloran TV. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284:805808.
  • 23
    Huffman DL, O'Halloran TV. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 2002; 70:677701.
  • 24
    Hamza I, Schaefer M, Klomp LW, Gitlin JD. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sci U S A 1999; 96:1336313368.
  • 25
    Larin D, Mekios C, Das K, Ross B, Yang AS, Gilliam TC. Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J Biol Chem 1999; 274:2849728504.
  • 26
    Wernimont AK, Huffman DL, Lamb, O'Halloran TV, Rosenzweig AC. Structural basis for copper transfer by the metallochaperone for Menkes/Wilson disease proteins. Nat Struct Biol 2000; 7:766771.
  • 27
    Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci U S A 2001; 98:68486852.
  • 28
    Walker JM, Tsivkovskii R, Lutsenko S. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 2002; 277:2795327959.
  • 29
    Hamza I, Prohaska J, Gitlin JD. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci U S A 2003; 100:12151220.
  • 30
    Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993; 5:327337.
  • 31
    Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 1993; 5:344350.
  • 32
    Yamaguchi Y, Heiny ME, Gitlin JD. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 1993; 197:271277.
  • 33
    Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 1997; 272:2146121466.
  • 34
    Schaefer M, Hopkins R, Failla M, Gitlin JD. Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am J Physiol 1999; 276:G639G646.
  • 35
    Moller JV, Juul B, LeMaire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1996; 1286:151.
  • 36
    Lutsenko S, Petris MJ. Function and regulation of the mammalian copper-transporting ATPases:Insights from biochemical and cell biological approaches. J Membr Biol 2003; 191:112.
  • 37
    Tsivkovskii R, Eisses JF, Kaplan JH, Lutsenko SL. Functional properties of the copper-transporting ATPase ATP7B (the Wilson's disease protein) expressed in insect cells. J Biol Chem 2001; 277:976983.
  • 38
    Payne A, Gitlin JD. Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem 1998; 273:37653770.
  • 39
    Voskoboinik I, Strausak D, Greenough M Brooks H, Petris M, Smith S, Mercer JF, et al. Functional analysis of the N-terminal CXXC metal-binding motifs in the human Menkes copper-transporting P-type ATPase expressed in cultured mammalian cells. J Biol Chem 1999; 274:2200822012.
  • 40
    Forbes J, Hsi G, Cox D. Role of the copper-binding domain in the copper transporter function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem 1999; 274:1240812413.
  • 41
    Tsivkovskii R, MacArthur BC, Lutsenko S. The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem 2001; 19:22342242.
  • 42
    Petrukhin K, Lutsenko S, Chernov L, Ross BM, Kaplan JH, Gilliam TC. Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predicting. Hum Mol Genet 1994; 3:16471656.
  • 43
    Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW. The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet 1995; 9:210217.
  • 44
    Hellman NE, Kono S, Miyajima H, Gitlin JD. Biochemical analysis of a missense mutation in aceruloplasminemia. J Biol Chem 2002; 277:13751380.
  • 45
    Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, de Jong GJ, Gitlin JD. Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 2002; 277:4663246638.
  • 46
    Gitlin JD, Schroeder JJ, Lee-Ambrose LM, Cousin RJ. Mechanisms of caeruloplasmin biosynthesis in normal and copper-deficient rats. Biochem J 1992; 282:835839.
  • 47
    van De Sluis B, Rothuizen J, Pearson PL, van Oost BA, Wijmenga C. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 2002; 11:165173.
  • 48
    Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism of biliary copper excretion. Gastroenterology 2000; 119:782793.
  • 49
    Petris MJ, Voskoboinik I, Cater M, Smith K, Kim BE, Llanos RM, Strausak D, et al. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 2002; 277:4673646742.
  • 50
    Payne AS, Kelly EJ, Gitlin JD. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A 1998; 95:1085410859.
  • 51
    Forbes JR, Cox DW. Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am J Hum Genet 1998; 63:16631674.
  • 52
    Forbes JR, Cox DW. Copper-dependent trafficking of Wilson disease mutant ATP7B proteins. Hum Mol Genet 2000; 9:19271935.
  • 53
    Huster D, Hoppert M, Lutsenko S, Zinke J, Lehmann C, Mossner J, Berr F, et al. Defective cellular localization of mutant ATP7B in Wilson's disease patients and hepatoma cell lines. Gastroenterology 2003; 124:335345.
  • 54
    Tsivkovskii R, Efremov RG, Lutsenko S. The role of the invariant His1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B. J Biol Chem 2003; 278:1330213308.
  • 55
    Eide D, Bridgham JT, Zhao Z, Mattoon JR. The vacuolar H+ ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function and iron metabolism. Mol Gen Genet 1993; 241:447456.
  • 56
    Gaxiola RA, Yuan DS, Klausner RD, Fink GR. The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci U S A 1998; 95:40464050.
  • 57
    Schwappach B, Strobrawa S, Hechenberger M, Steinmeyer K, Jentsch, TJ. Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Geflp. J Biol Chem 1998; 273:1511015118.
  • 58
    Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci U S A 1998; 95:1364113645.
  • 59
    Strand S, Hofmann WJ, Grambihler A, Hug H, Volkmann M, Otto G, Wesch H, et al. Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med 1998; 4:588593.
  • 60
    Schiefermeier M, Kollegger H, Madl C, Polli C, Oder W, Kuhn H, Berr F, et al. The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson's disease. Brain 2000; 123:585590.
  • 61
    Sokol RJ. Antioxidant defenses in metal-induced liver damage. Semin Liver Dis 1996; 16:3946.
  • 62
    Pyeritz RE. Genetic heterogeneity in Wilson disease: lessons from rare alleles. Ann Intern Med 1997; 127:7072.
  • 63
    Riordan SM, Williams R. The Wilson's disease gene and phenotypic diversity. J Hepatol 2001; 34:165171.
  • 64
    Li Y, Togahsi Y, Sato S, Emoto T, Kang JH, Takeichi N, Kobayashi H, et al. Spontaneous hepatic copper accumulation in Long Evans Cinnamon rats with hereditary hepatitis. A model of Wilson's disease. J Clin Invest 1991; 87:18581861.
  • 65
    Wu J, Forbes JR, Chen HS, Cox DW. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet 1994; 7:541545.
  • 66
    Sone K, Maeda M, Wakabayashi K, Takeichi N, Mori M, Sugimara T, Nagao M. Inhibition of hereditary hepatitis and liver tumor development in Long-Evans cinnamon rats by the copper-chelating agent trientine dihydrochloride. Hepatology 1996; 23:764770.
  • 67
    Terada K, Aiba N, Yang X, Iida M, Nakai M, Miura N, Sugiyama T. Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett 1999; 448:5356.
  • 68
    Kato J, Kobune M, Kohgo Y, Suguwara N, Hisai H, Nakamura T, Sakamaki S, et al. Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long Evans Cinnamon rats. J Clin Invest 1996; 98:923929.
  • 69
    Theophanous MB, Cox DW, Mercer JF. The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet 1996; 5:16191624.
  • 70
    Coronado V, Nanji M, Cox DW. The Jackson toxic milk mouse as a model for copper loading. Mamm Genome 2001; 12:793795.
  • 71
    Michalczyk AA, Rieger J, Allen KJ, Mercer JF, Ackland ML. Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation. Biochem J 2000; 352:565571.
  • 72
    Voskoboinik I, Greenough M, La Fontaine S, Mercer JF, Camakaris J. Functional studies on the Wilson copper P-type ATPase and toxic milk mouse mutant. Biochem Biophys Res Commun 2001; 281:966970.
  • 73
    Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, Ross BM, et al. Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 1999; 8:16651671.
  • 74
    Hultgren BD, Stevens JB, Hardy RM. Inherited, chronic progressive hepatic degeneration in Bedlington terriers with increased liver copper concentrations: clinical and pathologic observations and comparison with other copper-associated liver diseases. Am J Vet Res 1986; 47:365377.
  • 75
    Muller T, Muller W, Feichtinger H. Idiopathic copper toxicosis. Am J Clin Nutr 1998; 67(Suppl):1082S1086S.
  • 76
    Muller T, van de Sluis B, Zhernakova A, van Binsbergen E, Janecke AR, Bavdekar A, Pandit A, et al. The canine copper toxicosis gene MURR1 does not cause non-Wilsonian hepatic copper toxicosis. J Hepatol 2003; 38:164168.