SEARCH

SEARCH BY CITATION

References

  • Anderson, J. R. The adaptive character of thought 1990 Hillsdal, NJ: Lawrence Erlbaum Associates, Inc
  • Anderson, J. R. The adaptive nature of human categorization. Psychological Review. 1991 98 409-429
  • Ashby, F. G. Multidimensional models of perception and cognition 1992 Hillsdal, NJ: Lawrence Erlbaum Associates, Inc
  • Ashby, F. G., Alfonso-Reese, L. A. Categorization as probability density estimation. Journal of Mathematical Psychology. 1995 39 216-233
  • Ashby, F. G., Maddox, W. T. Relations between prototype, exemplar, and decision bound models of categorization. Journal of Mathematical Psychology. 1993 37 372-400
  • Brehmer, B. Subjects' ability to use functional rules. Psychonomic Science. 1971 24 259-260
  • Brehmer, B. Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. Organizational Behavior and Human Decision Processes. 1974 11 1-27
  • Brent, M. An efficient, probabilistically sound algorithm for segmentation and word discovery. Machine Learning. 1999 34 71-105
  • Bruner, J. S., Goodnow, J. J., Austin, G. A. A study of thinking 1956 New York: Wiley
  • Busemeyer, J. R., Byun, E., DeLosh, E. L., McDaniel, M. A. Learning functional relations based on experience with input–output pairs by humans and artificial neural networks In Lamberts, K., Shanks, D. (Eds.), Concepts and categories 1997 Cambridg, MA: MIT Press 405-437
  • Chater, N. Reconciling simplicity and likelihood principles in perceptual organization. Psychological Review. 1996 103 566-581
  • Chater, N., Manning, C. D. Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences. 2006 10 335-344
  • Chater, N., Vitányi, P. Simplicity: A unifying principle in cognitive science. Trends in Cognitive Science. 2003 7 19-22
  • Chomsky, N. Aspects of the theory of syntax 1965 Cambridg, MA: MIT Press
  • Dempster, A. P., Laird, N. M., Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 1977 39
  • Elman, J. L. Finding structure in time. Cognitive Science. 1990 14 179-211
  • Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., Plunkett, K. Rethinking innateness: A connectionist perspective 1996 Cambridg, MA: MIT Press
  • Feldman, J. Minimization of Boolean complexity in human concept learning. Nature. 2000 407 630-633
  • Goldwater, S., Griffiths, T. L., Johnson, M. Contextual dependencies in unsupervised word segmentation 2006 Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics Sydney Australia: Association for Computational Linguistics 673-680
  • Goodman, N. Fact, fiction, and forecast 1955 Cambridg, MA: Harvard University Press
  • Griffiths, T. L., Kalish, M. L. A Bayesian view of language evolution by iterated learning In Bara, B. G., Barsalou, L., Bucciarelli, M. (Eds.), 2005 Proceedings of the 27th annual conference of the Cognitive Science Society Mahwa, NJ: Lawrence Erlbaum Associates, Inc 827-832
  • Griffiths, T. L., Kalish, M. L. A Bayesian view of language evolution by iterated learning. Cognitive Science. 2007 31 441-480
  • Griffiths, T. L., Sanborn, A. N., Canini, K. R., Navarro, D. J. Categorization as nonparametric Bayesian density estimation In Chater, N., Oaksford, M. (Eds.), The probabilistic mind Oxford England: Oxford University Press (in press).
  • Heit, E. A Bayesian analysis of some forms of inductive reasoning In Oaksford, M., Chater, N. (Eds.), Rational models of cognition 1998 Oxford England: Oxford University Press 248-274
  • Hurwicz, L. The design of mechanisms for resource allocation. American Economic Review. 1973 63 1-30
  • Kalish, M. L., Griffiths, T. L., Lewandowsky, S. Iterated learning: Intergenerational knowledge transmission reveals inductive biases. Psychonomic Bulletin and Review. 2007 14 288-294
  • Kalish, M. L., Lewandowsky, S., Kruschke, J. Population of linear experts: Knowledge partitioning and function learning. Psychological Review. 2004 111 1072-1099
  • Kearns, M., Vazirani, U. An introduction to computational learning theory 1994 Cambridg, MA: MIT Press
  • Kemp, C., Tenenbaum, J. B. Theory-based induction In Alterman, R., Kirsh, D. (Eds.), 2003 Proceedings of the 25th Annual Conference of the Cognitive Science Society Mahwa, NJ: Lawrence Erlbaum Associates 658-663
  • Kirby, S. Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity. IEEE Journal of Evolutionary Computation. 2001 5 102-110
  • Kirby, S., Dowman, M., Griffiths, T. L. Innateness and culture in the evolution of language. Proceedings of the National Academy of Sciences. 2007 104 5241-5245
  • Kruschke, J. K. Alcove: An exemplar-based connectionist model of category learning. Psychological Review. 1992 99 22-44
  • Lee, M. D., Webb, M. R. Modeling individual differences in cognition. Psychonomic Bulletin & Review 2005 605-621
  • Lombrozo, T. Simplicity and probability in causal explanation. Cognitive Psychology. 2007 55 232-257
  • Love, B. C., Medin, D. L., Gureckis, T. M. SUSTAIN: A network model of category learning. Psychological Review. 2004 111 309-332
  • Luce, R. D. Individual choice behavior 1959 New York: Wiley
  • Medin, D. L., Schaffer, M. M. Context theory of classification learning. Psychological Review. 1978 85 207-238
  • Myers, J. L. Probability learning and sequence learning In Estes, W. K. (Ed.), Handbook of learning and cognitive processes: Approaches to human learning and motivation 1976 Hillsdal, NJ: Lawrence Erlbaum Associates, Inc 171-205
  • Norris, J. R. Markov chains 1997 Cambridge, England: Cambridge University Press
  • Nosofsky, R. M. Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General. 1986 115 39-57
  • Nosofsky, R. M. Attention and learning processes in the identification and categorization of integral stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition. 1987 13 87-108
  • Nosofsky, R. M., Gluck, M., Palmeri, T. J., McKinley, S. C., Glauthier, P. Comparing models of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory & Cognition. 1994 22 352-369
  • Oaksford, M., Chater, N. Rational models of cognition 1998 Oxford England: Oxford University Press
  • Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., Shafir, E. Category-based induction. Psychological Review. 1990 97 185-200
  • Reed, S. K. Pattern recognition and categorization. Cognitive Psychology. 1972 3 393-407
  • Rips, L. J. Inductive judgments about natural categories. Journal of Verbal Learning and Verbal Behavior. 1975 14 665-681
  • Rosenthal, J. S. Convergence rates of Markov chains. SIAM Review. 1995 37 387-405
  • Rumelhart, D., McClelland, J. On learning the past tenses of English verbs In McClelland, J., Rumelhart, D. (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 2 1986 Cambridg, MA: MIT Press 216-271 the PDP Research Group
  • Shepard, R. N. Towards a universal law of generalization for psychological science. Science. 1987 237 1317-1323
  • Shepard, R. N., Hovland, C. I., Jenkins, H. M. Learning and memorization of classifications. Psychological Monographs 1961 75 (13, Whole No. 517)
  • Silverman, B. W. Density estimation for statistics and data analysis 1986 London: Chapman & Hall
  • Smith, K., Kirby, S., Brighton, H. Iterated learning: A framework for the emergence of language. Artificial Life. 2003 9 371-386
  • Steyvers, M., Tenenbaum, J. B., Wagenmakers, E. J., Blum, B. Inferring causal networks from observations and interventions. Cognitive Science. 2003 27 453-489
  • Strang, G. Linear algebra and its applications, 1988 3rd ed. Philadelphia: Saunders
  • Tenenbaum, J. B. A Bayesian framework for concept learning 1999 Cambridg, MA: Massachussets Institute of Technology Unpublished doctoral dissertation
  • Tenenbaum, J. B., Griffiths, T. L. Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences 2001 24 629-641
  • Vanpaemel, W., Storms, G., Ons, B. A varying abstraction model for categorization In Bara, B. G., Barsalou, L., Bucciarelli, M. (Eds.), 2005 Proceedings of the 27th Annual Conference of the Cognitive Science Society Mahwa, NJ: Lawrence Erlbaum Associates, Inc 2277-2282
  • Vapnik, V. N. The nature of statistical learning theory 1995 New York: Springer
  • Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance. 1961 16 8-27
  • Vulkan, N. An economist's perspective on probability matching. Journal of Economic Surveys 2000 14 101-118