Ku86 together with Ku70, DNA-PKcs, XRCC4 and DNA ligase IV forms a complex involved in repairing DNA double-strand breaks (DSB) in mammals. Yeast Ku has an essential role at the telomere; in particular, Ku deficiency leads to telomere shortening, loss of telomere clustering, loss of telomeric silencing and deregulation of the telomeric G-overhang. In mammals, Ku proteins associate to telomeric repeats; however, the possible role of Ku in regulating telomere length has not yet been addressed. We have measured telomere length in different cell types from wild-type and Ku86-deficient mice. In contrast to yeast, Ku86 deficiency does not result in telomere shortening or deregulation of the G-strand overhang. Interestingly, Ku86−/− cells show telomeric fusions with long telomeres (>81 kb) at the fusion point. These results indicate that mammalian Ku86 plays a fundamental role at the telomere by preventing telomeric fusions independently of the length of TTAGGG repeats and the integrity of the G-strand overhang.