SEARCH

SEARCH BY CITATION

References

  • Barz WP and Walter P (1999) Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol Biol Cell, 10, 10431059.
  • Beeler TJ, Fu D, Rivera J, Monaghan E, Gable K and Dunn TM (1997) SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37°C, is required for mannosylation of inositolphosphorylceramide. Mol Gen Genet, 255, 570579.
  • Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H and Dunn T (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem, 273, 3068830694.
  • Benghezal M, Benachour A, Rusconi S, Aebi M and Conzelmann A (1996) Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J, 15, 65756583.
  • Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J and Nijkamp HJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA, 97, 49614966.
  • Canivenc-Gansel E, Imhof I, Reggiori F, Burda P, Conzelmann A and Benachour A (1998) GPI anchor biosynthesis in yeast: phosphoethanolamine is attached to the α1,4-linked mannose of the complete precursor glycophospholipid. Glycobiology, 8, 761770.
  • Chung N, Jenkins G, Hannun YA, Heitman J and Obeid LM (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem, 275, 1722917232.
  • Dickson RC, Nagiec EE, Wells GB, Nagiec MM and Lester RL (1997a) Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem, 272, 2962029625.
  • Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB and Lester RL (1997b) Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem, 272, 3019630200.
  • D'mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C and Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast [published erratum appears in J. Biol. Chem. , 269, 28522]. J Biol Chem, 269, 1545115459.
  • Dunn TM, Haak D, Monaghan E and Beeler TJ (1998) Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast, 14, 311321.
  • Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S and Hannun YA (1993) Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem, 268, 92559261.
  • Grilley MM, Stock SD, Dickson RC, Lester RL and Takemoto JY (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem, 273, 1106211068.
  • Guillas I, Pfefferli M and Conzelmann A (2000) Analysis of ceramides present in glycosylphosphatidylinositol anchored proteins of Saccharomyces cerevisiae. Methods Enzymol, 312, 506515.
  • Haak D, Gable K, Beeler T and Dunn T (1997) Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem, 272, 2970429710.
  • Hajra AK and Bishop JE (1986) Preparation of radioactive acyl coenzyme A. Methods Enzymol, 122, 5053.
  • Hanson BA and Lester RL (1980) Effects of inositol starvation on phospholipid and glycan syntheses in Saccharomyces cerevisiae. J Bacteriol, 142, 7989.
  • Horvath A, Sütterlin C, Manning-Krieg U, Movva NR and Riezman H (1994) Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J, 13, 36873695.
  • Jazwinski SM (1999) Molecular mechanisms of yeast longevity. Trends Microbiol, 7, 247252.
  • Jenkins GM, Richards A, Wahl T, Mao C, Obeid L and Hannun Y (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem, 272, 3256632572.
  • Jiang JC, Kirchman PA, Zagulski M, Hunt J and Jazwinski SM (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res, 8, 12591272.
  • Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D and Dunn T (2001) Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear–vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol, 21, 109125.
  • Lester RL, Wells GB, Oxford G and Dickson RC (1993) Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J Biol Chem, 268, 845856.
  • Lynch DV (2000) Enzymes of sphingolipid metabolism in plants. Methods Enzymol, 311, 130149.
  • Mandala SM et al. (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot, 48, 349356.
  • Mandala SM, Thornton R, Tu Z, Kurtz MB, Nickels J, Broach J, Menzeleev R and Spiegel S (1998) Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci USA, 95, 150155.
  • Mandon EC, Ehses I, Rother J, van Echten G and Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyl transferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem, 267, 1114411148.
  • Mao C, Saba JD and Obeid LM (1999) The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochem J, 342, 667675.
  • Mao C, Xu R, Bielawska A and Obeid LM (2000) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem, 275, 68766884.
  • Merrill AH, Wang E, Mullins RE, Jamison WC, Nimkar S and Liotta DC (1988) Quantitation of free sphingosine in liver by high-performance liquid chromatography. Anal Biochem, 171, 373381.
  • Muniz M, Nuoffer C, Hauri HP and Riezman H (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol, 148, 925930.
  • Nagiec MM, Wells GB, Lester RL and Dickson RC (1993) A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem, 268, 2215622163.
  • Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL and Dickson RC (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphoryl ceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem, 272, 98099817.
  • Nagiec MM, Skrzypek M, Nagiec EE, Lester RL and Dickson RC (1998) The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem, 273, 1943719442.
  • Nickels JT and Broach JR (1996) A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev, 10, 382394.
  • Oh CS, Toke DA, Mandala S and Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem, 272, 1737617384.
  • Reggiori F, Canivenc-Gansel E and Conzelmann A (1997) Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J, 16, 35063518.
  • Saba JD, Nara F, Bielawska A, Garrett S and Hannun YA (1997) The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem, 272, 2608726090.
  • Schimmöller F, Singer-Kruger B, Schroder S, Kruger U, Barlowe C and Riezman H (1995) The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J, 14, 13291339.
  • Schneiter R, Hitomi M, Ivessa AS, Fasch EV, Kohlwein SD and Tartakoff AM (1996) A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane–pore complex. Mol Cell Biol, 16, 71617172.
  • Shama S, Lai C-Y, Antoniazzi JM, Jiang JC and Jazwinski SM (1998) Heat stress-induced life span extension in yeast. Exp Cell Res, 245, 379388.
  • Sipos G, Reggiori F, Vionnet C and Conzelmann A (1997) Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J, 16, 34943505.
  • Skrzypek M, Lester RL and Dickson RC (1997) Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae. J Bacteriol, 179, 15131520.
  • Skrzypek MS, Nagiec MM, Lester RL and Dickson RC (1999) Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces. J Bacteriol, 181, 11341140.
  • Sütterlin C, Doering TL, Schimmöller F, Schroder S and Riezman H (1997) Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci, 110, 27032714.
  • Wells GB, Dickson RC and Lester RL (1998) Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J Biol Chem, 273, 72357243.
  • Wu WI, McDonough VM, Nickels JTJ, Ko J, Fischl AS, Vales TR, Merrill AHJ and Carman GM (1995) Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J Biol Chem, 270, 1317113178.
  • Zanolari B, Friant S, Funato K, Sütterlin C, Stevenson BJ and Riezman H (2000) Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J, 19, 28242833.
  • Zhao C, Beeler T and Dunn T (1994) Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. J Biol Chem, 269, 2148021488.