• 1.
    Van Camp G, Smith RJH. Hereditary Hearing Loss Web site. Available at:
  • 2.
    Manolis EN, Yandavi N, et al. A gene for non-syndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome14q12-13. Human Mol Genet 1996; 5:10471050.
  • 3.
    Robertson NG, Lu L, Heller S, et al. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nature Genet 1998; 20:299303.
  • 4.
    de Kok YJM, Bom SJH, Brunt TM, et al. A Pro51Ser mutation in the COCH gene is associated with late onset autosomal dominant progressive sensorineural hearing loss with vestibular defects. Human Mol Genet 1999; 8:361366.
  • 5.
    Khetarpal U, Schuknecht HF, Gacek RR, Holmes LG. Autosomal dominant sensorineural hearing loss: pedigrees, audiologic findings and temporal bone findings in two kindreds. Arch Otolaryngol Head Neck Surg 1991; 117:10321042.
  • 6.
    Verhagen WIM, Huygen PL, Joosten EM. Familial progressive vestibulo-cochlear dysfunction. Arch Neurol 1988; 45:766768.
  • 7.
    Verhagen WIM, Huygen PL, et al. Hereditary vestibulo-cochlear dysfunction and vascular disorders. J Neurol Sci 1989; 92:5563.
  • 8.
    Verhagen WIM, Huygen PL. Familial progressive vestibulo-cochlear dysfunction. Arch Neurol 1991; 48:262.
  • 9.
    Verhagen WIM, Huygen PL, Bles W. A new autosomal dominant syndrome of idiopathic progressive vestibulo-cochlear dysfunction with middle-age onset. Acta Otolaryngol 1992; 112:899906.
  • 10.
    Halpin C, Khetarpal U, McKenna MM. Autosomal dominant progressive sensorineural hearing loss in a large North American family. Am J Audiol 1996; 5:105111.
  • 11.
    Bom SJH, Kemperman MH, De Kok YJM, et al. Progressive cochleovestibular impairment caused by a point mutation in the COCH gene at DFNA9. Laryngoscope 1999; 109:15251530.
  • 12.
    Khetarpal U. Autosomal dominant sensorineural hearing loss: further temporal bone findings. Arch Otolaryngol Head Neck Surg 1993; 119:106108.
  • 13.
    Slepecky NB, Savage JE, Yoo TJ. Localization of type II, IX and V collagen in the inner ear. Acta Otolaryngol 192; 112:61117.
  • 14.
    Slepecky NB, Cefaratti LK, Yoo TJ. Type II and type IX collagen form heterotypic fibers in the tectorial membrane of the inner ear. Matrix 1992; 12:8086.
  • 15.
    Slepecky NB, Savage JE, Cefaratti LK, Yoo TJ. Electron-microscopic localization of type II, IX, and V collagen in the organ of Corti of the gerbil. Cell Tissue Res 1992; 267:413418.
  • 16.
    Khetarpal U, Lalwani AK. Nonsyndromic hereditary hearing loss. In: LalwaniAK, GrundfastKG, eds. Pediatric Otology and Neurotology. Philadelphia: JB Lippincott, 1998:313340.
  • 17.
    Marres H, van Ewijk M, Huygen P, et al. Inherited nonsyndromic hearing loss. An audiovestibular study in a large family with autosomal dominant progressive hearing loss related to DFNA2. Arch Otolaryngol Head Neck Surg 1997; 123:573577.
  • 18.
    Adachi E, Hayashi T. In vitro formation of fine fibrils with a D-periodic pattern from type V collagen. Collagen Rel Res 1985; 5:225232.
  • 19.
    Broek DL, Madri J, et al. Characterization of the tissue form of type V collagen from chick bone. J Biol Chem 1985; 260:555562.
  • 20.
    Modesti A, Kalebic T, Scarpa S, et al. Type V collagen in human amnion is 12 nm fibrillar component of the pericellular interstitium. Eur J Cell Biol 1984; 35:246255.
  • 21.
    Adachi E, Hayashi T, Hashimoto PH. Immunoelectron microscopical evidence that type V collagen is a fibrillar collagen: importance for an aggregating capability of the preparation for reconstituting banding fibrils. Matrix 1989; 9:232237.
  • 22.
    Franc S, Rousseau JC, Garrone R, et al. Microfibrillar composition of umbilical cord matrix: characterization of fibrillin, collagen VI and intact collagen V. Placenta 1998; 19:95104.
  • 23.
    Colombatti A, Bonaldo P, Doliana R. Type A modules: interacting domains found in several non-fibrillar collagens and other extracellular matrix proteins. Matrix 1993; 13:297306.
  • 24.
    Colombatti A, Paolo B. The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of the extracellular matrix, homeostasis, cellular adhesion and defense mechanisms. Blood 1991; 77:23052315.
  • 25.
    Muta T, Miyata T, Misumi Y, et al. Limulus factor C. An endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin-like domains. J Biol Chem 1991; 266:65546561.
  • 26.
    Khetarpal U, Robertson NG, Yoo TJ, Morton CC. Expression and localization of COL2A1 mRNA and type II collagen in the human fetal cochlea. Hear Res 1994; 79:5973.
  • 27.
    Tsuprun V, Santi P. Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea. Hear Res 1999; 129:3549.
  • 28.
    Pareti FI, Niiya K, McPherson JM, Ruggeri ZM. Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types I and III. J Biol Chem 1987; 262:1383513841.
  • 29.
    Marchant JK, Hahn RA, Linsenmayer TF, Birk DE. Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J Cell Biol 1996; 135:14151426.
  • 30.
    Linthicum FH, Fayad J, Otto SR, Galey FR, House WF. Cochlear implant histopathology. Am J Otol 1991; 2:256261.
  • 31.
    Rauch SD, Merchant SN, Thedinger BA. Meniere's syndrome and endolymphatic hydrops: double-blind temporal bone study. Ann Otol Rhinol Laryngol 1989; 98:873883.
  • 32.
    Okuno T, Sando I. Localization, frequency, and severity of endolymphatic hydrops and the pathology of labyrinthine membrane in Meniere's disease. Ann Otol Rhinol Laryngol 1987; 96:438445.
  • 33.
    Fransen E, Verstreken M, Verhagen WIM, et al. High prevalence of symptoms of Meniere's disease in three families with a mutation in the COCH gene. Hum Mol Genet 1999; 8:14251429.