• X-ray diffraction;
  • multiple diffraction;
  • epitaxial layers;
  • structural defects;
  • wurtzite structure

Three-wave diffraction has been measured for a set of GaN, AlN, AlGaN and ZnO epitaxial layers grown on c-sapphire. A Renninger scan for the primary forbidden 0001 reflection was used. For each of the three-wave combinations, θ-scan curves were measured. The intensity and angular width of both ϕ- and θ-scan three-wave peaks were analyzed. The experimental data were used to determine properties of the multiple diffraction pattern in highly distorted layers. It is shown that the FWHM of θ scans is highly sensitive to the structural perfection and strongly depends on the type of three-wave combination. The narrowest peaks are observed for multiple combinations with the largest l index of the secondary hkl reflection. An influence of the type of the dislocation structure on the θ-scan broadening was revealed. These experimental facts are interpreted by considering the scanning geometry in the reciprocal space and taking into account the disc-shaped reciprocal-lattice points. The total integrated intensities of all the three-wave combinations were determined and their ratios were found to be in only a qualitative agreement with the theory. For AlGaN layers, the presence of the nonzero 0001 reflection was revealed, in contrast to AlN and GaN films.