• data analysis;
  • small-angle scattering;
  • anisotropy;
  • computer programs

This article presents a new program that allows highly automatized analyses of series of, especially, anisotropic two-dimensional neutron and X-ray small-angle scattering data as well as one-dimensional data series. The main aim of this work was to reduce the effort of the analysis of complex scattering systems, which remains an essential burden in the evaluation process of complex systems. The program is built in a modular manner to support a stepwise analysis of small-angle scattering data. For example, from a two-dimensional data series, features such as anisotropy or changes of the preferred scattering direction or intensities along the radial or azimuthal directions as well as along the series axis (e.g. time axis) can quickly be extracted. Different anisotropy measurement methods are available, which are described herein. In a second step, physical scattering models can be fitted to the extracted data. More complex models can be easily added. The fitting procedure can be applied with nearly every possible constraint and works automatically on whole scattering data series. Furthermore, simultaneous fitting can be used to analyze coupled series, and parallel working methods are implemented to speed up the code execution. Finally, results can be easily visualized. The name of the program is SASET, which is an acronym standing for small-angle scattering evaluation tool. SASET is based on MATLAB.