The synthesis and crystal structures of a series of six crystalline potassium salts of hypodiphosphoric acid, H4P2O6, are reported, namely potassium hydrogen phosphonophosphonate, K+·H3P2O6, (I), dipotassium dihydrogen hypodiphosphate monohydrate, 2K+·H2P2O62−·H2O, (II), dipotassium dihydrogen hypodiphosphate dihydrate, 2K+·H2P2O62−·2H2O, (III), pentapotassium hydrogen hypodiphosphate dihydrogen hypodiphosphate dihydrate, 5K+·HP2O63−·H2P2O62−·2H2O, (IV), tripotassium hydrogen hypodiphosphate tetrahydrate, 3K+·HP2O63−·4H2O, (V), and tetrapotassium hypodiphosphate tetrahydrate, 4K+·P2O64−·4H2O, (VI). All the hypodiphosphate anions, viz. H3P2O6, H2P2O62−, HP2O63− and P2O64−, adopt a staggered conformation. The P—P bond lengths [2.1722 (7)–2.1892 (10) Å] do not depend on the basicity of the anion. The compounds are organized into different types of one-, two- or three-dimensional polymeric hydrogen-bonded networks, or simply exist in the form of isolated or dimeric units. The coordination numbers of the K+ cations range from 6 to 9, and the cationic sublattices are polymeric one-, two- or three-dimensional networks, or isolated [KO6] or dimeric [K2O12] polyhedra.