• structural dynamics;
  • femtosecond X-ray diffraction;
  • charge-density maps;
  • superlattice structures;
  • charge-transfer processes

Femtosecond X-ray diffraction allows for real-time mapping of structural changes in condensed matter on atomic length and timescales. Sequences of diffraction patterns provide both transient geometries and charge-density maps of crystalline materials. This article reviews recent progress in this field, the main emphasis being on experimental work done with laser-driven hard X-ray sources. Both Bragg diffraction techniques for bulk and nanostructured single crystals as well as the recently implemented powder diffraction from polycrystalline samples are discussed. In ferroelectric superlattice structures, coherent phonon motions and the driving stress mechanisms are observed in real time. In molecular crystals charge-transfer processes and the concomitant changes of the lattice geometry are analyzed.