• X-ray diffraction;
  • energy dispersive;
  • in situ;
  • molten salt;
  • electrolysis

This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray–Farthing–Chen Cambridge electrowinning cell, featuring molten CaCl2 as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.