• X-ray Fraunhofer holography;
  • X-ray dynamical diffraction;
  • image reconstruction;
  • X-ray microscopy

Taking into account background correction and using Fourier analysis, a numerical method of an object image correction using an X-ray dynamical diffraction Fraunhofer hologram is presented. An example of the image correction of a cylindrical beryllium wire is considered. A background correction of second-order iteration leads to an almost precise reconstruction of the real part of the amplitude transmission coefficient and improves the imaginary part compared with that without a background correction. Using Fourier analysis of the reconstructed transmission coefficient, non-physical oscillations can be avoided. This method can be applied for the determination of the complex amplitude transmission coefficient of amplitude as well as phase objects, and can be used in X-ray microscopy.